期刊文献+

基于视频的人体动作识别算法综述 被引量:17

Survey of human action recognition algorithms based on video
下载PDF
导出
摘要 以基于视频的人体动作识别为核心,首先对传统RGB动作识别领域的算法进行了全面回顾,包括传统算法和基于深度学习的算法,基于RGB视频的动作识别易受背景光照的影响识别精度不高,但有丰富的颜色外观信息;然后对RGB-D动作识别领域的算法进行分析总结,主要分为深度序列、骨骼和多特征融合三个方面,RGB-D视频具有多个模态可以为动作识别提供更多的信息,可以弥补基于RGB视频的不足但也带来了新的挑战;最后对常用数据集和未来可能的发展方向进行了展望。 Based on video action recognition,this paper firstly reviewed the traditional action recognition algorithms based on RGB,including traditional algorithms and deep learning algorithms.Because of the influence of background lighting,RGB-video-based action recognition is low accuracy,but it has rich color appearance information.Then this paper analyzed and summarized action recognition algorithms based on RGB-D,which was divided into depth sequence,bone and multi-feature fusion.RGB-D video has multiple modes and can provide more information for action recognition,which performs better than RGB video but also brings new challenges.Finally,this paper prospected the common data sets and the possible future development direction.
作者 黄晴晴 周风余 刘美珍 Huang Qingqing;Zhou Fengyu;Liu Meizhen(School of Control Science&Engineering,Shandong University,Jinan 250061,China)
出处 《计算机应用研究》 CSCD 北大核心 2020年第11期3213-3219,共7页 Application Research of Computers
基金 国家重点研发计划资助项目(2017YFB1302400) 山东省重大创新工程资助项目(2017CXGC0926) 国家面上基金资助项目(61375084) 山东省重点研发计划资助项目(2017GGX30133)。
关键词 动作识别 RGB数据 RGB-D数据 深度学习 action recognition RGB data RGB-D data deep learning
  • 相关文献

参考文献5

二级参考文献65

  • 1Kishore K. Reddy,Mubarak Shah.Recognizing 50 human action categories of web videos[J].Machine Vision and Applications.2013(5) 被引量:1
  • 2Chris Ellis,Syed Zain Masood,Marshall F. Tappen,Joseph J. LaViola,Rahul Sukthankar.Exploring the Trade-off Between Accuracy and Observational Latency in Action Recognition[J].International Journal of Computer Vision.2013(3) 被引量:1
  • 3Rongrong Ji,Hongxun Yao,Xiaoshuai Sun.Actor-independent action search using spatiotemporal vocabulary with appearance hashing[J].Pattern Recognition.2010(3) 被引量:1
  • 4Juan Carlos Niebles,Hongcheng Wang,Li Fei-Fei.Unsupervised Learning of Human Action Categories Using Spatial-Temporal Words[J].International Journal of Computer Vision.2008(3) 被引量:1
  • 5Ivan Laptev.On Space-Time Interest Points[J].International Journal of Computer Vision (-).2005(2-3) 被引量:1
  • 6Fujiyoshi H, Lipton A J, Kanade T. Real-time human mo- tion analysis by image skeletonization. IEICE Transactions on Information and Systems, 2004, 87-D(1): 113-120. 被引量:1
  • 7Chaudhry R, Ravichandran A, Hager G, Vidal R. His- tograms of oriented optical flow and Binet-Cauchy kernels on nonlinear dynamical systems for the recognition of hu- man actions. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL: IEEE, 2009. 1932-1939. 被引量:1
  • 8Dalal N, Triggs B. Histograms of oriented gradients for human detection. In: Proceedings of the 2005 IEEE Con- ference on Computer Vision and Pattern Recognition. San Diego, CA, USA: IEEE, 2005. 886-893. 被引量:1
  • 9Lowe D G. Object recognition from local scale-invariant fea- tures. In: Proceedings of the 7th IEEE International Confer- ence on Computer Vision. Kerkyra: IEEE, 1999. 1150-1157. 被引量:1
  • 10Schuldt C, Laptev I, Caputo B. Recognizing human actions: a local SVM approach. In: Proceedings of the 17th In- ternational Conference on Pattern Recognition. Cambridge: IEEE, 2004. 32-36. 被引量:1

共引文献304

同被引文献126

引证文献17

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部