期刊文献+

受控循环远程态制备

Controlled cyclic remote state preparation
下载PDF
导出
摘要 为了解决多方量子通信问题,首先提出一种构造十粒子纠缠态的方法,并籍此构造出一个3n+1粒子纠缠态。其次,以十粒子纠缠态为量子信道,提出一个三方受控循环远程制备协议。该协议在监察者David的控制下,Alice能为Bob远程制备一个任意单粒子态,Bob能够在Charlie处远程制备一个任意单粒子态,Charlie也能为Alice远程制备任意单粒子态。进一步,借助3n+1粒子纠缠态,将此循环协议推广到任意n方受控循环远程态制备情形。在远程态制备过程中,每个发送者充分利用各自掌握的信息和前馈策略来构造恰当的测量基,通过经典通信和局域操作,就能成功实现任意单粒子态的远程制备。 In order to solve the problem of multi-party quantum communication,this paper first proposed a method to construct a ten-particle entangled state,and then constructed a 3 n + 1-particle entangled state. Secondly,this paper proposed a tripartite controlled cyclic remote preparation protocol using ten-particle entangled state as quantum channel. The protocol showed that under the control of the supervisor David,Alice could remotely prepare an arbitrary single-particle state for Bob,Bob could prepare an arbitrary single-particle state on Charlie’s site,and Charlie could also remotely prepare an arbitrary single-particle state for Alice. Furthermore,by using the 3 n + 1-particle entangled state,the paper generalized this cyclic protocol to the case of arbitrary n-party controlled cyclic remote state preparation. In the process of remote state preparation,each sender made full use of their own information and feedforward strategy to construct an appropriate measurement base. By using classical communication and local operation,the scheme successfully realized remote preparation of arbitrary single-particle states.
作者 彭家寅 Peng Jiayin(School of Mathematics&Information Science,Neijiang Normal University,Neijiang Sichuan 641100,China)
出处 《计算机应用研究》 CSCD 北大核心 2020年第9期2802-2805,2814,共5页 Application Research of Computers
基金 国家教育部数学与应用数学专业综合改革资助项目(ZG0464) 四川省科技厅重点科技项目(2006J13-035) 四川省数学与应用数学专业综合改革资助项目(01249) 国家自然科学基金资助项目(11071178)。
关键词 量子通信 受控远程态制备 循环远程态制备 多粒子纠缠态 前馈测量策略 quantum communication controlled remote state preparation cyclic remote state preparation multi-particle entangled state feedforward measurement strategy
  • 相关文献

参考文献4

二级参考文献38

  • 1Bennett C H, Brassard G and Crepeau C 1993 Phys. Rev. Lett. 70 1895. 被引量:1
  • 2Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881. 被引量:1
  • 3Wang X W, Su Y H and Yang G J 2010 Chin. Phys. Lett. 27 100303. 被引量:1
  • 4Peng J Y and Mo Z W 2013 Chin. Phys. B 22 050310. 被引量:1
  • 5Wang X W and Yang G J 2009 Phys. Rev. A 79 064306. 被引量:1
  • 6Yang K Y and Xia Y 2012 Int. J. Theor. Phys. 51 1647. 被引量:1
  • 7Wang X W and Yang G J 2009 Phys. Rev. A 79 062315. 被引量:1
  • 8Dong D Y, Chen C L, Li H X and Tarn T J 2008 IEEE Trans. Syst. Man Cybern. B 38 1207. 被引量:1
  • 9Peng J Y and Mo Z W 2013 Int. J. Quantum Inf. 11 1350004. 被引量:1
  • 10Bu?ek V and Hillery M 1996 Phys. Rev. A 54 1844. 被引量:1

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部