期刊文献+

基于MMTD和兴趣偏向系数的协同过滤推荐算法 被引量:1

Collaborative filtering recommendation algorithm based on MMTD and interest bias coefficient
下载PDF
导出
摘要 针对传统基于用户的协同过滤推荐算法存在的相似性度量不准确和缺乏对用户评分合理应用的问题,提出了一种结合中介真值程度度量(MMTD)和兴趣偏向系数的推荐算法。该方法首先采用MMTD度量用户评分的相似性;然后利用用户评分相似性改进余弦相似性公式和Jaccard公式,得到新的基于MMTD的用户相似性度量方法;最后结合兴趣偏向系数输出推荐结果。在MovieLens-100k数据集上的实验结果表明,该方法可以在一定程度上提高用户间相似性度量的准确性,提高推荐结果的准确率和召回率。 Due to the inaccuracy of the traditional user-based collaborative filtering recommendation algorithm and the lack of reasonable application of user ratings,this paper proposed a recommendation algorithm combining the measure of medium truth degree( MMTD) and the interest bias coefficient. The method firstly used MMTD to measure the similarity of user ratings.Secondly,it improved the cosine similarity formula and Jaccard formula by adopting user score similarity,and obtained a new MMTD-based user similarity measurement method. Finally,combining the interest bias coefficient,it output the recommendation result. The experimental results on the MovieLens-100 k dataset show that the algorithm can improve the accuracy of the similarity measure between users to some extent,and improve the precision and recall of recommendation results.
作者 陆荣 周宁宁 Lu Rong;Zhou Ningning(School of Computer,Nanjing University of Posts&Telecommunications,Nanjing 210023,China)
出处 《计算机应用研究》 CSCD 北大核心 2020年第9期2600-2603,共4页 Application Research of Computers
基金 智能电网保护和运行控制国家重点实验室开放课题(20169,201610) 国家自然科学基金资助项目(61170322,61373065,61302157)。
关键词 协同过滤 用户评分 用户相似度 中介真值程度度量 兴趣偏向系数 collaborative filtering user ratings user similarity measure of medium truth degree interest bias factor
  • 相关文献

参考文献9

二级参考文献81

  • 1洪龙,肖奚安,朱梧槚.中介真值程度的度量及其应用(I)[J].计算机学报,2006,29(12):2186-2193. 被引量:79
  • 2邢春晓,高凤荣,战思南,周立柱.适应用户兴趣变化的协同过滤推荐算法[J].计算机研究与发展,2007,44(2):296-301. 被引量:148
  • 3Herlocker J L,Konstan J A, Borchers A, et al. An Algorithmic Framework for Performing Collaborative Filtering [ C]// SIGIR 99:Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Re- trieval. 1999 : 230-237. 被引量:1
  • 4Resnick P, Iacovou N, Suchak M, et al. GroupLens: An Open Architecture for Collaborative Filtering of Netnews[C] // Pro- ceedings of the 1994 ACM Conference on Computer Supported Cooperative Work. 1994:175-186. 被引量:1
  • 5Adomavieius G, Tuzhilin A. Towards the Next Generation of Recommender Systems: a Survey of the State-of-the-art and Possible Extensions [J]. IEEE Trans on Knowledge and Data Engineering, 2005,17 (6) : 734-749. 被引量:1
  • 6Sarwar B, Karypis G, Konstan J, et al. Item-Based Collaborative Filtering Recommendation Algorithms[C] //Proceedings of the 10th International World Wide Web Conference. New York, 2001 : 285-295. 被引量:1
  • 7Breese J, Hecherman D, Kadie C. Empirical Analysis of Predic- tive Algorithms for Collaborative Filtering[C]//Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI 98). 1998:43-52. 被引量:1
  • 8Wang J, Vries A, Reinders M. Unifying User-based and Item- based Collaborative Filtering Approaches by Similarity Fusion [C]//SIGIR 06: Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Infor- mation Retrieval. 2006 :501-508. 被引量:1
  • 9Shardanand U, Maes P. Social Information Filtering: Algorithms for Automating 'Word of Mouth' [C] // Proceeding of the Con- ference on Human Factors in Computing Systems. 1995:210-217. 被引量:1
  • 10Miller B N, Albert I, Lain S K, et al. MovieLens Unplugged.. Ex- periences with an Occasionally Connected Recommender System [C]// IUI 03: Proceedings of the 8th International Conference on Intelligent User Interfaces New York, 2003:263-266. 被引量:1

共引文献475

同被引文献12

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部