期刊文献+

非参数面板数据模型的贝叶斯分位回归方法研究

Reseasrch on Bayesian Quantile Regression for Nonparametric Panel Data Models
下载PDF
导出
摘要 文章针对面板数据在贝叶斯分析的框架下讨论了非参数分位回归建模方法。利用低秩薄板惩罚样条的展开,通过引入虚拟变量和非对称Laplace分布,建立贝叶斯分层分位回归模型,给出了未知参数估计的Metropolis-Hastings抽样算法。模拟结果显示,新方法在稳定性和无偏性方面都更优于4种传统方法。最后以消费支出面板数据为例,演示了新方法在实际建模中的应用,获得了一些有益的新结论。 The nonparametric quantile regression modeling method for panel data is discussed under the framework of Bayesian analysis in this paper.By using the expansion of punishment splines in low-rank thin plates,a Bayesian hierarchical quantile regression model is established by taking into account virtual variables and asymmetrical Laplace distribution,with a metropolisHastings sampling algorithm for unknown parameter estimation presented.The simulation results show that the new method is superior to the four traditional methods in terms of stability and unbiasedness.Finally,the paper takes the consumer expenditure panel data as an example to demonstrate the application of the new method in practical modeling,and obtains some useful new conclusions.
作者 张敏 罗幼喜 Zhang Min;Luo Youxi(School of Science,Hubei University of Technology,Wuhan 430068,China)
出处 《统计与决策》 CSSCI 北大核心 2020年第19期9-14,共6页 Statistics & Decision
基金 国家社会科学基金资助项目(17BJY210)。
关键词 惩罚样条 非参数分位回归 MCMC算法 蒙特卡罗模拟 penalty spline nonparametric quantile regression MCMC algorithm Monte Carlo simulation
  • 相关文献

参考文献3

二级参考文献12

  • 1TIAN Maozai & CHEN Gemai School of Statistics, Renmin University of China, Beijing 100872, China and Center for Applied Statistics, Renmin University of China, Beijing 100872, China,Department of Mathematics and Statistics, University of Calgary, Canada.Hierarchical linear regression models for conditional quantiles[J].Science China Mathematics,2006,49(12):1800-1815. 被引量:20
  • 2陈平.ESTIMATORS AND SOME BEHAVIORS FORA PARTIALLY LINEAR MODEL WITH CENSORED DATA[J].Acta Mathematica Scientia,1999,19(3):321-331. 被引量:2
  • 3孟庆芳,张强,牟文英.混沌序列自适应多步预测及在股票中的应用[J].系统工程理论与实践,2005,25(12):62-68. 被引量:8
  • 4Altaleb A, Chauveau D. Bayesian analysis of the Logit model and comparison of two Metropolis-Hastings strategies [J]. Computational Statistics & Data Analysis, 2002,39(1) : 137 - 152. 被引量:1
  • 5Roberts G O,Rosenthal J S. Optimal scaling for various Metropolis-Hastings algorlthms[J]. Statistical Science, 2001, 6(4):351 - 367. 被引量:1
  • 6Geweke J, Tanizaki H. Note on the sampling distribution for the Metropolis-Hastings algorithm[J]. Communication in Statistics-Theory and Methods, 2003, 32(4) : 775 - 789. 被引量:1
  • 7Sawyer S. The Metropolitan-Hastings algorithm and extensions[ J ]. Washington University, April 17, 2004. 被引量:1
  • 8Chen P. Some nonparametric estimators and their properties under the competing risks case[J]. Sankhya: Indian J Statist Series A, 1998, 60(2) : 293 - 304. 被引量:1
  • 9Chen P, Yan F R, Wu Y Y, et al. Detection of oufliers in ARMAX time series models [ J ]. The 5th IIGSS Workshop, Wuhan. June, 2007, to appear. 被引量:1
  • 10Chen P, Chen Y. The Identification of Oufliers in ARMAX Models via Genetic Algorithm[J]. The 5th IIGSS Workshop, Wuhan June, 2007, to appear. 被引量:1

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部