期刊文献+

管长和氮掺杂对单壁碳纳米管热导率的影响研究

Research on the Influence of Tube Length and Nitrogen Substitutional Doping for the Thermal Conductivity of Single-walled Carbon Nanotubes
下载PDF
导出
摘要 采用反向非平衡分子动力学方法模拟研究了300 K下(10,10)单壁碳纳米管的热导率随管长和氮掺杂浓度的变化规律。结果表明:单壁碳纳米管的热导率随管长增加呈线性升高,管长从10 nm增加到100 nm时热导率升高了近5倍,但升高速率逐渐减缓,这是由于管长在增加过程中逐渐接近声子平均自由程大小,声子传热由弹道输运向扩散输运转变所导致;随着氮掺杂缺陷浓度的增加,单壁碳纳米管的热导率先急剧下降后趋于稳定,热导率先急剧下降与管内声子平均自由程的减小有关,而后热导率趋于稳定是由于氮原子的声子模式在声子传热中占主导地位。 The change law of the thermal conductivity of(10,10)single-walled carbon nanotube varying with tube length and nitrogen substitutional doping concentration at 300 K is studied by reverse non-equilibrium molecular dynamics simulation.The simulation results show that the thermal conductivity of single-walled carbon nanotube increases linearly with the increase of the tube length.The thermal conductivity increases by almost five times as the tube length varies from 10 nm to 100 nm,but the increase rate decreases tardily.It shows that the tube length gradually approaches the size of the phonon mean free path during the increase,and the phonon heat transfer process changes from the ballistic transport to the diffusive transport.The study shows that the thermal conductivity first drops sharply and then approaches to constant.The former is a result of the decrease of the phonon mean free path in nanotube,and the latter is because the phonon mode of the nitrogen atoms dominates the phonon heat transfer.
作者 邵钶 刘远超 钟建斌 邹玉 黄志东 SHAO Ke;LIU Yuanchao;ZHONG Jianbin;ZOU Yu;HUANG Zhidong(School of Mechanical Engineering,Beijing Institute of Petrochemical Technology)
出处 《北京石油化工学院学报》 2020年第3期21-25,共5页 Journal of Beijing Institute of Petrochemical Technology
基金 国家自然科学基金资助项目(51106012) 2019年辽宁省高等学校创新人才支持计划(LR2019036)。
关键词 管长 氮掺杂 单壁碳纳米管 热导率 分子动力学模拟 tube length nitrogen substitutional doping single-walled carbon nanotube thermal conductivity molecular dynamics simulation
  • 相关文献

参考文献5

二级参考文献39

  • 1保文星,朱长纯.碳纳米管热传导的分子动力学模拟研究[J].物理学报,2006,55(7):3552-3557. 被引量:20
  • 2P Lambin, V Meunier. Measuring the Helicity of Carbon Nanotubes [J]. Carbon, 2000, 38(11/12): 1713-1721. 被引量:1
  • 3M Buongiorno Nardelli. Mechanical Properties, Defects and Electronic Behavior of Carbon Nanotubes [J]. Carbon, 2000, 38(11/12): 1703-1711. 被引量:1
  • 4Y Miyamoto. Spectroscopic Characterization of Stone- Wales Defects in Nanotubes [J]. Physical Review B, 2004, 69(12): 1413 1419. 被引量:1
  • 5Aron Cummings, Mohamed Osman, Deepak Srivastava. Thermal conductivity of Y-Junction Carbon Nanotubes [J]. Phys. Rev. B, 2004, 70(11): 5405-5411. 被引量:1
  • 6F Y Meng, Shigenobu Ogata, D S Xu. Thermal Conductivity of an Ultrathin Carbon Nanotube with an X-shaped Junction [J]. Physical Review B, 2007, 75(20): 5403-5409. 被引量:1
  • 7Haibo Fan, Kai Zhang, Yuen real Performance of Carbon Effect of Defects on Ther- Nanotube Investigated by Molecular Dynamics Simulation [C]//International Conference on Electronic Materials and Packaging. Kowloon: Hong Kong, 2006:1-4. 被引量:1
  • 8P Kim, L Shi, A Majumdar. Thermal Transport Measurements of Individual Multiwalled Nanotubes [J]. Physical Review Letters, 2001, 87(21): 5502-5504. 被引量:1
  • 9J Che, T Cabin, W Goddard Ⅲ. Thermal Conductivity of Carbon Nanotubes [J]. Nanotechnology, 2000, 11:65-69. 被引量:1
  • 10D W Brenner, O A Shenderova, J A Harrison. A Second- Generation Reactive Empirical Bond Order (REBO) Potential Energy Expression for Hydrocarbons [J]. J. Phys., 2002, 14:783-802. 被引量:1

共引文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部