期刊文献+

基于动态规划与机器学习的插电式混合动力汽车能量管理算法研究 被引量:12

Research on Energy Management Algorithm of PHEV Based on Dynamic Programming and Machine Learning
下载PDF
导出
摘要 为提高插电式混合动力汽车的燃油经济性,对基于动态规划与机器学习的能量管理算法展开了研究。利用K-均值聚类算法将20个标准工况划分为3个类型的工况段,利用动态规划(DP)算法最优功率分配数据分别训练3个类型工况段的神经网络模型,在控制过程中根据实际工况段类型选择相应的神经网络模型进行功率分配,并对上海市某个随机工况进行了仿真运算,结果表明,该算法燃油经济性较电量消耗-电量维持(CD-CS)策略有明显的改善。 In order to improve the fuel economy of plug-in hybrid electric vehicle,this paper studies energy management algorithm based on dynamic programming and machine learning.Firstly,the K-means clustering algorithm is used to divide 20 standard driving cycles into three types of driving conditions.Secondly,neural network model of three driving condition types is trained with optimum power allocation of DP algorithm.And the corresponding neural network model is selected according to the actual driving condition type for power distribution.Finally,the simulation is carried out based on a random driving condition in Shanghai.The results show that the fuel economy of this algorithm is significantly improved compared with the CD-CS strategy.
作者 陈渠 殷承良 张建龙 秦文刚 Chen Qu;Yin Chengliang;Zhang Jianlong;Qin Wengang(National Engineering Laboratory for Automotive Electronic Control Technology,Shanghai Jiao Tong University,Shanghai 200240;United Automotive Electronic Systems Co.,Ltd.,Shanghai 201206)
出处 《汽车技术》 CSCD 北大核心 2020年第10期51-57,共7页 Automobile Technology
基金 上海汽车工业科技发展基金会项目(1745)。
关键词 插电式混合动力汽车 能量管理算法 动态规划 K-均值聚类 BP神经网络 PHEV Energy management strategy Dynamic Programming K-means clustering algorithm BP neural network
  • 相关文献

参考文献8

二级参考文献35

  • 1欧阳易时,金达锋,罗禹贡.并联混合动力汽车功率分配最优控制及其动态规划性能指标的研究[J].汽车工程,2006,28(2):117-121. 被引量:23
  • 2Fazeli A M, Nabi A, Farzad R S , et al. Development of Energy Management System for a Parallel Hybrid Electric Vehicle Using Fuzzy Logic[ C ]. 8th Biennial ASME Conference on Engineering Systems Design and Analysis, Torino, Italy,2006:1-6. 被引量:1
  • 3Kisacikoglu M C, Uzunoglu M, Alam M S, et al. Load Sharing U- sing Fuzzy Logic Control in a Fuel Cell/Ultracapacitor Hybrid Ve- hicle[ J ]. International Journal of Hydrogen Energy, 2009,34 : 1497-1507. 被引量:1
  • 4Perez L, Bossio G R, Moitrs D, et al. Optimization of Power Man- agement in an Hybrid Electric Vehicle Using Dynamic Programming [J]. Mathematics and Computers in Simulation, 2006,73 : 244 - 254. 被引量:1
  • 5Johannesson L, Pettersson S, Egardt B, et al. Approximate Dynamic Programming Applied to a Four Quadrant Transducer Series-parallel Hybrid Electric Bus [ C ]. European Control Conference, Buda- pest ,2009. 被引量:1
  • 6Sun Hui. Multi-objective Optimization for Hydraulic Hybrid Vehicle Based on Adaptive Simulated Annealing Genetic Algorithm [ J ]. Engineering Applications of Artificial Intelligence, 2010,23 : 27 - 33. 被引量:1
  • 7Domenico Bianchi, Luciano Roiando, Lorenzo Serrac, et al. A Rule-based Strategy for a Series/Parallel Hybrid Electric Vehicle: an Approach Based on Dynamic Programming[ C]. Proceedings of the ASME 2010 Dynamic Systems and Control Conference, Cam- bridge, Massaehuetts, USA,2010 : 1-8. 被引量:1
  • 8Sciarretta A, Back M, GuzzeUa L, et al. Optimal of Parallel Hy- brid Electric Vehicles[J]. IEEE Transactions on Control Systems Technology, 2004,12 : 352 - 362. 被引量:1
  • 9Kessels J. Energy Management for Automotive Power Nets [ D ]. Eindhoven, the Netherlands, Technische Universiteit,2007. 被引量:1
  • 10Johannesson L, Asbogard M, Egardt B. Assessing the Potential of Predictive Control for Hybrid Vehicle Powertrains Using Stochastic Dynamic Programming [ J ]. IEEE Transactions on Intelligent Transportation Systems, 2007,8 : 71 - 83. 被引量:1

共引文献47

同被引文献96

引证文献12

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部