期刊文献+

基于数据驱动的用户用能行为分析方法 被引量:12

Analysis Method of Data-driven Energy Use Behavior of Users
下载PDF
导出
摘要 随着综合能源系统的快速发展,为了满足综合能源系统联合规划的需要,亟需对综合能源系统中用户用能行为进行分析建模。基于数据驱动思想,引入了深度学习方法,提出了一种用于用户用能行为分析的方法。首先,对影响用户用能行为的数据类型、结构进行分析;然后,引入Seq2Seq技术,以GRU为神经元构建深度学习模型;最后,通过算例对所提方法的有效性进行验证。算例研究表明:所提的方法能够以海量历史数据为基础,准确预测出用户的用能行为情况。 With the rapid development of integrated energy system,it is urgent to analyze and model the energy use behavior of users in order to meet the needs of integrated energy system joint planning.Based on the idea of data-driven,deep learning method is introduced,and analysis method for energy use behavior of users is proposed.Firstly,the data types and structures that affect energy use behavior of users are analyzed.Then,Seq2 Seq technology is introduced to construct a deep learning model with GRU as the neuron.Finally,the effectiveness of the proposed method is verified by an example.The example shows that the proposed method can accurately predict the energy use behavior of users based on massive historical data.
作者 李江峡 马艳 古海生 伍先艳 田斌 柴涛 LI Jiangxia;MA Yan;GU Haisheng;WU Xianyan;TIAN Bin;CHAI Tao(Hubei Provincial Key Laboratory for Operation and Control of Cascaded Hydropower Station,China Three Gorges University,Yichang 443002,China;Wuhan Technical College of Communications,Wuhan 430000,China;State Grid Anhui Hefei Power Supply Company,Hefei 230000,China;State Grid Hubei Enshi Power Supply Company,Enshi 445000,China)
出处 《智慧电力》 北大核心 2020年第9期63-68,共6页 Smart Power
基金 国家自然科学基金资助项目(61876097)。
关键词 用户用能行为分析 数据驱动 深度学习 Seq2Seq技术 GRU energy use behavior of users data-driven deep learning Seq2Seq technology GRU
  • 相关文献

参考文献16

二级参考文献259

共引文献695

同被引文献183

引证文献12

二级引证文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部