期刊文献+

一种基于空间信息的FSICM图像分割算法 被引量:4

Image Segmentation Algorithm Named FSICM Based on Spatial Information
下载PDF
导出
摘要 针对模糊C均值聚类(FCM)算法存在对噪声和图像中的异常值非常敏感的缺点,本文提出了一种基于空间信息的FCM图像分割算法(Fuzzy spatial information C-means clustering,FSICM)。该算法有效的利用图像中的空间信息和待分割图像的灰度信息,提高了对噪声图像的分割精度。首先将得到的空间函数引入到隶属度函数中改变了每个像素点的隶属度权重,以此来抑制噪声。然后,将图像中像素的邻域信息考虑进来,对每个像素进行处理形成线性加权和图像,对新形成的图像的灰度直方图进行聚类。通过对合成图像和真实图像的实验结果表明,FSICM算法对噪声图像的分割精度均在99%以上,对比其他算法,本文提出的算法能够在保持图像重要细节的同时去除噪声,对噪声图像具有鲁棒性。 In this paper,we present a fuzzy spatial information c-means clustering(FSICM)algorithm for image segmentation by introducing spatial information,in order to overcome the defects of being sensitive to noises and outliers in image brought by Fuzzy c-means clustering(FCM)algorithm.The algorithm effectively utilizes the spatial information of the image and the gray information of the image to be segmented,and improves the segmentation accuracy of the noisy image.Firstly,the spatial function is introduced into the membership function to change the membership weight of each pixel so as to suppress the noise.Then,the neighborhood information of pixels in the image is taken into account,each pixel is processed to form a linear weighted image,and the gray histogram of the newly formed image is clustered.Experimental results of both synthetic and real images show that the segmentation accuracy of FSICM algorithm for noise image is above 99%.Compared with other algorithms,the algorithm proposed in this paper can remove noise while maintaining important details of the image and is robust to noise images.
作者 朱素霞 祖宏亮 孙广路 ZHU Su-xia;ZU Hong-liang;SUN Guang-lu(School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China)
出处 《哈尔滨理工大学学报》 CAS 北大核心 2020年第4期101-108,共8页 Journal of Harbin University of Science and Technology
基金 国家自然科学基金(61502123) 黑龙江省青年科学基金(QC2015084) 中国博士后科学基金(2015M571429).
关键词 模糊C均值聚类算法 图像分割 空间信息 隶属度函数 fuzzy c-means image segmentation spatial information membership functions
  • 相关文献

参考文献4

二级参考文献25

  • 1吕庆文,陈武凡.基于互信息量的图像分割[J].计算机学报,2006,29(2):296-301. 被引量:40
  • 2丁世飞,史忠植,靳奉祥,夏士雄.基于广义信息距离的直接聚类算法[J].计算机研究与发展,2007,44(4):674-679. 被引量:6
  • 3BEZDEK J C. Pattern recognition with fuzzy objective function algo- rithms[ M]// Advanced Applications in Pattern Recognition. New York: Springer US, 1981. 被引量:1
  • 4CHEN Y, ZHANG J, WANG S, et al. Brain magnetic resonance image segmentation based on an adapted non-local fuzzy c-means method[J]. IET Computer Vision, 2012, 6(6): 610 -625. 被引量:1
  • 5KOUHI A, SEYEDARABI H, AGHAGOLZADEH A. A modified FCM algorithm for MRI brain image segmentation[ C] // Proceedings of the 2011 7th Iranian Machine Vision & Image Processing. Piscat- away: IEEE, 2011:1 -5. 被引量:1
  • 6HATHAWAY R J, BEZDEK J C. Fuzzy c-means clustering with in- complete data[ J]. IEEE Transactions on Systems, Man, and Cyber- netics, Part B, 2001,31(5) : 735 -744. 被引量:1
  • 7LIM C, LEONG J, KUAN M. A hybrid neural network system for pattern classification tasks with missing features[ J]. IEEE Transac- tions on Pattern Analysis and Machine Intelligence, 2005, 27(4):648 - 653. 被引量:1
  • 8HATHAWAY R J, BEZDEK J C. Extending fuzzy and probabilistic clustering to very large data sets[ J]. Computational Statistics & Data Analysis, 2006, 51(1) : 215 -234. 被引量:1
  • 9TIMOTHY C, HAVENS, JAMES C, et al. Fuzzy c-means algo- rithms for very large data[ J]. IEEE Transactions on Fuzzy System, 2012, 20(6) : 1130 - 1146. 被引量:1
  • 10MACQUEEN J. Some methods for classification and analysis of mul- tivariate observations[ C]// Proceeding of 5th Berkeley Symposium on Mathematics, Statistics and Probability. Berkeley: AMS, 1997: 281 - 296. 被引量:1

共引文献149

同被引文献44

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部