期刊文献+

在线问诊平台中基于组合条件的医生推荐研究 被引量:8

Recommending Doctors Online Based on Combined Conditions
原文传递
导出
摘要 【目的】针对在线问诊平台医生推荐结果不精确的问题,通过融合多种推荐策略发现优质的医生资源。【方法】通过构建一种基于组合条件的医生推荐模型,其中包括基于相似患者、基于相似领域和基于医生绩效,最后采用线性加权的混合策略整合三种推荐结果,得到最终医生推荐集。同时,为了验证模型的可行性和准确性,采集"好大夫在线"真实数据进行分析。【结果】实验结果表明,经过三种推荐策略的组合,患者当时实际就诊的医生被成功返回的准确率高达86%,说明该模型具有良好的应用可行性和较好的推荐效果。【局限】目标用户的选择容易受随机结果影响;在医生混合推荐结果分析中,每种推荐策略的权重设置比较粗略。【结论】基于组合条件的医生推荐模型,从不同角度挖掘医生特征,有利于帮助患者快速识别并选择优质的医生资源。 [Objective] This paper integrates multiple recommendation strategies to discover high-quality doctor services, aiming to improve the recommendation results from medical consultation websites. [Methods] We built a doctor recommendation model based on combined conditions, which included three models for similar patients,medical fields and doctor performance. Then, we used a linear weighted hybrid strategy to merge these results to create a final list. We retrieved data from"Good Doctor Online"to evaluate the proposed model. [Results] Up to 86% of the doctors seen by the patients were identified by our new model. [Limitations] The choice of users might be affected by random factors and the weight setting of each strategy needs to be improved. [Conclusions]The proposed model could effectively recommend high-quality doctors for patients.
作者 李跃艳 熊回香 李晓敏 Li Yueyan;Xiong Huixiang;Li Xiaomin(School of Information Management,Central China Normal University,Wuhan 430079,China)
出处 《数据分析与知识发现》 CSSCI CSCD 北大核心 2020年第8期130-141,共12页 Data Analysis and Knowledge Discovery
基金 华中师范大学中央高校基本科研业务费(人文社科类)重大项目“基于语义网的在线健康信息的挖掘与推荐研究”(项目编号:CCNU19Z02004)的研究成果之一。
关键词 在线问诊平台 Word2Vec 医生推荐 组合条件 Online Inquiry Platform Word2Vec Doctor Recommendation Combination Conditions
  • 相关文献

参考文献14

二级参考文献79

  • 1张素娟,郑庆华,胡云华,孙霞.一种面向网络答疑的汉语切分歧义消除算法[J].计算机工程与应用,2004,40(25):55-58. 被引量:4
  • 2徐德智,郑春卉,K. Passi.基于SUMO的概念语义相似度研究[J].计算机应用,2006,26(1):180-183. 被引量:56
  • 3王松桂,陈敏,陈立萍.线性统计模型:线性回归与方差分析[M].北京:高等教育出版社,2004. 被引量:3
  • 4Bengio Y,Ducharme R, Vincent P. A neural probabilistic language model[ J]. Journal of Machine Learning Research,2003,3(7) :1 137-1 155. 被引量:1
  • 5Michael U G, AapoHyvrinen. Noise-contrastive estimation of unnormalized statistical models,with applications to natural imagestatistics[ J] ? The Journal of Machine Learning Research,2012,13( 2) ;307-361. 被引量:1
  • 6Tomas M,Chen K,Corrado G. Efficient estimation of word representations in vector space[ EB/OL].( 2013-08-18) [ 2013-09-07]http : / / arxiv. org/ abs/1301.3781. 被引量:1
  • 7Bengio Y,LeCun Y. Scaling Learning Algorithms Towards AI [ M ]//Large-Scale Kernel Machines. Cambridge: MIT Press,2007. 被引量:1
  • 8Mikolov T, Karafi M, Burget L, et al. Recurrent neural network based language model [ C]//Proceedings of Interspeech.Chiba,Japan:MIT Press,2010: 131 -138. 被引量:1
  • 9Mikolov T,Ilya S,Kai C,et al. Distributed representations of words and phrases and their compositionality[EB/OL]. [2013-10-16]http:// arxiv.org/ abs/1310.4546. 被引量:1
  • 10Elman J. Finding structure in time[ J]. Cognitive Science, 1990,14(7) : 179-211. 被引量:1

共引文献182

同被引文献99

引证文献8

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部