期刊文献+

基于情感膨胀门控CNN的情感-原因对提取 被引量:5

Extracting Emotion-Cause Pairs Based on Emotional Dilation Gated CNN
原文传递
导出
摘要 【目的】针对情感-原因对抽取这一情感分析任务,提出情感膨胀门控CNN(EDGCNN)模型。【方法】首先使用情感判别模型CNN找出情感句,然后将情感句编码输入到融入情感特征的EDGCNN模型,找出相应的情感原因,得到情感-原因对,并在实验数据集进行情感原因关键字标注。【结果】召回率和F1值分别达到了63.52%和60.45%,召回率优于已有方法最好结果,F1值与已有方法最优性能相当,而且能从更细粒度实现情感-原因对抽取。【局限】情感-原因对语料规模较小,有待进一步扩充完善。【结论】EDGCNN模型能够从文本中更好地抽取情感-原因对。 [Objective]This paper proposes an Emotional Dilation Gated CNN(EDGCNN)model,aiming to extract emotion-cause pairs for sentiment analysis.[Methods]First,we used the emotional discriminant model to identify sentiment sentences.Then,we input coding for these sentences to the EDGCNN model and located corresponding reasons.Finally,we tagged keywords of reasons generated from the experimental dataset.[Results]The new model’s recall and F1 values reached 63.52%and 60.45%respectively on the training dataset,which were better or very similiar to the existing ones The proposed model also extracted emotion-cause pairs at finergranularity level.[Limitations]The experimental corpus size was small.[Conclusions]The proposed model can extract emotion-cause pairs effectively.
作者 代建华 邓育彬 Dai Jianhua;Deng Yubin(Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing,Hunan Normal University,Changsha 410081,China;Research Institute of Languages and Cultures,Hunan Normal University,Changsha 410081,China;College of In formation Science and Engineering,Hunan Normal University,Changsha 410081,China)
出处 《数据分析与知识发现》 CSSCI CSCD 北大核心 2020年第8期98-106,共9页 Data Analysis and Knowledge Discovery
基金 湖南省科技创新计划项目“湖湘高层次人才聚集工程-创新人才”(项目编号:2018RS3065)和“智能计算与语言信息处理湖南省重点实验室”(项目编号:2018TP1018)的研究成果之一。
关键词 情感-原因对抽取 EDGCNN 情感判别 Emotion-Cause Pair Extraction EDGCNN Emotion Discrimination
  • 相关文献

参考文献2

二级参考文献3

共引文献48

同被引文献35

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部