摘要
便携式电子设备的逐渐普及促使储能器件朝着柔性化、高储能方向发展。锂硫电池因拥有高比容量、能量密度高、低成本、环境友好等优势,被认为是极具潜力的下一代商用化二次电池,然而,其实用化仍受中间产物多硫化物的“穿梭效应”、正极活性物质硫的体积膨胀和低导电性等因素的限制,具有高导电性的碳纳米材料常被用于与硫复合来解决以上问题。本文针对采用碳纳米纤维、碳纳米管、石墨烯作为基体,重点介绍了硫与以上碳纳米材料的复合和相应的硫-纳米碳复合柔性正极材料的设计制备,探讨了提高正极硫含量和利用率的策略,分析了正极材料结构性质与电池电化学性能之间联系,最后对硫-纳米碳复合柔性正极材料的发展前景和面临的挑战进行了展望。
The gradual population of portable electronic devices promotes the development of energy storage devices in the direction of flexibility and high energy density.Lithium-sulfur batteries are regarded as the next generation of commercial secondary batteries with great potential thanks to the high specific capacity and energy density,low cost,environmental friendliness,etc.However,the practical application of lithium-sulfur batteries is still limited by several factors such as the“shuttle effect”of the polysulfide intermediates,the volume expansion and low electronic conductivity of the sulfur cathode,and these issues are often addressed by using carbon nanomaterials as the hosts to hybrid with sulfur.Herein,this review mainly focuses on the preparation of sulfur-nanocarbon flexible composite cathodes based on carbon nanofibers,carbon nanotubes,and graphene as the host materials,respectively.The strategies to improve the mass loading and utilization of sulfur cathode are discussed,and also the relationship between the structures and properties of cathodes and the electrochemical performance of batteries is further analyzed.Finally,the development prospect and challenges of the sulfur-nanocarbon flexible composite cathodes are presented.
作者
邵姣婧
吴旭
龙翔
刘美丽
黄鑫威
庞驰
孙奇
SHAO Jiaojing;WU Xu;LONG Xiang;LIU Meili;HUANG Xinwei;PANG Chi;SUN Qi(School of Materials and Metallurgy,Guizhou University,Guiyang 550025,China)
出处
《贵州大学学报(自然科学版)》
2020年第5期67-77,共11页
Journal of Guizhou University:Natural Sciences
基金
国家自然科学基金资助项目(51972070)
贵州省科技厅科技计划资助项目(黔科合基础[2020]1Z042
黔科合平台人才资助项目[2017]5627)
贵州省研究生教育创新计划资助项目(黔教合YJSCXJH[2018]045)
贵州大学“SRT计划”资助项目(贵大SRT字[2018]302号)。
关键词
锂硫电池
硫正极
能量密度
穿梭效应
碳纳米材料
lithium-sulfur batteries
sulfur cathode
energy density
shuttle effect
carbon nanomaterials