期刊文献+

微扰形式非马尔可夫随机薛定谔方程及其应用

Perturbative non-Markovian stochastic Schr dinger equations and their applications
下载PDF
导出
摘要 近年来,越来越多的实验结果表明量子效应在各类光电材料超快动力学过程中有着非常重要的作用,对这些现象的理论研究促进了许多量子动力学方法的快速发展.和量子主方程相比,非马尔可夫随机薛定谔方程(non-Markovian stochastic Schr dinger equation,NMSSE)通过演化希尔伯特空间中的随机波函数求解动力学,其计算成本与系统大小之间具有良好的标度关系,适合进行高效的并行计算,因而在大尺度系统中受到广泛应用.本文主要介绍近年来本课题组针对大尺度开放量子系统所发展的微扰形式的NMSSE方法,从影响泛函框架出发回顾了微扰形式NMSSE的理论基础,讨论了其在不同表象下的形式和优缺点,并以有机体系中激子能量弛豫过程的模拟及载流子迁移率的计算为例阐述其应用. In recent years,an increasing number of experiments have confirmed the crucial role played by quantum effects in the ultrafast dynamics of various optoelectronic materials,and theoretical research on these phenomena has boosted the rapid development of numerous quantum dynamics methods.Compared with quantum master equations,non-Markovian stochastic Schr dinger equations(NMSSEs)solve the dynamics with evolving stochastic wavefunctions in Hilbert space,and have been generally applied to large-scale systems due to their favorable scaling property with respect to the system size and the suitability of highly efficient parallel computing.Thispaper mainly focuses on perturbative NMSSEs developed for large-scale open quantum systems in recent years.The theoretical foundation of perturbative NMSSEs is revisited within the influence functional framework,and concrete expressions of perturbative NMSSEs as well as their merit and demerit in different representations,are discussed.To expound their applications,the simulation of the hot exciton energy relaxation process and the calculation of carrier mobilities in organic systems are presented as examples.
作者 连曼 汪宇晨 赵仪 LIAN Man;WANG Yuchen;ZHAO Yi(State Key Laboratory of Physical Chemistry of Solid Surfaces,Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry,College of Chemistry and Chemical Engineering,Xiamen university,Xiamen 361005,China)
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2020年第5期791-804,共14页 Journal of Xiamen University:Natural Science
基金 国家自然科学基金(21833006,21773191)。
关键词 非马尔可夫随机薛定谔方程 倒易空间 热激子能量弛豫 载流子输运 non-Markovian stochastic Schr dinger equation reciprocal space hot exciton energy relaxation carrier transport
  • 相关文献

二级参考文献95

  • 1A. G. Redfield, The theory of relaxation processes, Adv. Magn. Reson. 1, 1 (1965). 被引量:1
  • 2G. Lindblad, On the generators of quantum dynamical semigroups, Commun. Math. Phys. 48(2), 119 (1976). 被引量:1
  • 3H. P. Breuer and F. Petruccione, The Theory of Open Quantum Systems, New York: Oxford University Press, 2002. 被引量:1
  • 4J. Cao, A phase-space study of Bloch-Redfield theory, J. Chem. Phys. 107(8), 3204 (1997). 被引量:1
  • 5S. A. Crooker, J. A. Hollingsworth, S. Tretiak, and V. I. Klimov, Spectrally resolved dynamics of energy transfer in quantum-dot assemblies: Towards engineered energy flows in artificial materials, Phys. Rev. Lett. 89(18), 186802 (2002). 被引量:1
  • 6D. Kim, S. Okahara, M. Nakayama, and Y. Shim, Experimental verification of Forster energy transfer between semiconductor quantum dots, Phys. Rev. B 78(15), 153301(2008). 被引量:1
  • 7S. I. E. Vulto, M. A. de Baat, R. J. W. Louwe, H. P. Per-mentier, T. Neef, M. Miller, H. van Amerongen, and T. J. Aartsma, Exciton simulations of optical spectra of the FMO complex from the green sulfur bacterium Chlorobium, tepidum at 6 K, J. Phys. Chem. B 102(47), 9577 (1998). 被引量:1
  • 8T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, Two-dimensional spectroscopy of electronic couplings in photosynthesis, Nature 434(7033), 625 (2005). 被引量:1
  • 9G. S. Engel, T. R. Calhoun, E. L. Read, T. Ahn, T. Man-cal, Y. C. Cheng, R. E. Blankenship, and G. R. Fleming, Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems, Nature 446(7137), 782(2007). 被引量:1
  • 10J. Wu, F. Liu, Y. Shen, J. Cao, and R. J. Silbey, Efficient energy transfer in light-harvesting systems (I): optimal temperature, reorganization energy and spatial—temporal correlations, New J. Phys. 12(10), 105012 (2010). 被引量:1

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部