期刊文献+

自相似流量的ARIMA预测模型研究 被引量:2

Research on Arima Prediction Model of Self Similarity Traffic
下载PDF
导出
摘要 计算机网络体系逐渐扩大,因此网络的服务质量和性能也急需提高。网络流量预测是网络管理的一个重要手段,研究表明网络流量具有自相似特性,在此基础上该文提出一种ARIMA预测模型。该模型首先对所生成的网络流量数据进行预处理,基于相关性与偏相关性选择ARMA模型,其次通过AIC、BIC确定阶数,利用检验后的模型进行预测,最后评估预测模型的性能。ARIMA时间序列模型能够预测非平稳数据,与传统统计模型相比,具有可忽略其他的随机变量、预测准确性更高、突发性影响较小的优点。 With the gradual expansion of computer network system,the service quality and performance of network also need to be improved.Network traffic prediction is an important means of network management.The research shows that network traffic has self similar characteristics.On this basis,this paper proposes an ARIMA prediction model.Firstly,the model preprocesses the generated network traffic data,selects ARMA model based on correlation and partial correlation,then determines the order through AIC and BIC,uses the tested model to predict,and finally evaluates the performance of the prediction model.ARIMA time series model can predict non-stationary data.Compared with the traditional statistical model,ARIMA time series model has the advantages of ignoring other random variables,higher prediction accuracy and less sudden impact.
作者 张志伟 刘立士 ZHANG Zhiwei;LIU Lishi(Shenyang Ligong University,Shenyang,Liaoning Province,110159 China)
机构地区 沈阳理工大学
出处 《科技资讯》 2020年第23期25-26,29,共3页 Science & Technology Information
关键词 ARIMA模型 自相似 流量预测 研究 ARIMA model Self similarity Traffic prediction Research
  • 相关文献

参考文献6

二级参考文献19

  • 1王淑花.基于时间序列模型的组合预测模型研究[D].秦皇岛:燕山大学,2011. 被引量:4
  • 2Andrawis R R, Atiya A F, Shishiny H E. Forecast Combinations of Computational Intelligence and Linear Models for The NN5 Time Se- ries Forecasting Competition[J]. International Journal of Forecasting, 2011, 27(3). 被引量:1
  • 3Carey G, Rob L. Modeling and Forecasting Tourism Demand for Arriv- als With Stochastic Non-Stationary Seasonality and InterventionlJ] . Tourism Management, 2002, 23(3). 被引量:1
  • 4Tsenga F M, Yub H C, Tzengc G H. Combining Neural Network Mod- el With Seasonal Time Series ARIMA Model[J]. Technological Fore- casting & Social Change, 2002, (69). 被引量:1
  • 5Johann P, Stephen W F. Univariate Versus Multivariate Time Series Forecasting: An Application To International Tourism Demand [J]. In- ternational Journal of Forecasting, 2003, 19(3). 被引量:1
  • 6Ixia. IxNetwork [EB/OL]. [2015-10-201. http: // www. ixiacom, com/products/ixnetwork. 被引量:1
  • 7Avallone S, Guadagno S, Emma D, et al. D-ITG dis- tributed Internet traffic generator [C] // International Conference on Quantitative Evaluation of Systems. Enschede, Netherlands:IEEE, 2004:316-317. 被引量:1
  • 8Abdoa A, Awad H, Paredes S, et al. OC-48 configu- rable IP traffic generator with DWDM capability [C] // Proc Canadian Conference on Electrical and Com- puter Engineering. Ottawa, Canada: IEEE, 2006: 1842-1845. 被引量:1
  • 9Covington G A, Gibb G, Lockwood J W, et al. A packet generator on the NetFPGA platform [C] // Proe IEEE Field-Programmable Custom Computing Machines. Napa, California:IEEE, 2009: 235-288. 被引量:1
  • 10Leland W, Taqqu M, Willinger W, et al. On the self- similar nature of ethernet traffic (extended version) [J]. IEEE/ACM Transactions on Networking, 1994, 2(1); 1-15. 被引量:1

共引文献73

同被引文献15

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部