期刊文献+

Knock in of a hexanucleotide repeat expansion in the C9orf72 gene induces ALS in rats 被引量:3

下载PDF
导出
摘要 Background:The GGGGCC(G4C2)repeat expansion in the human open reading frame 72 on chromosome 9,C9orf72,is the most common cause of amyotrophic lateral sclerosis(ALS).Studies in transgenic mouse models have linked the pathogenic mechanism of G4C2 repeat expansion to RNA foci or the accumulation of unnatural dipeptide repeats in neurons.However,only one of the existing transgenic mouse lines developed typical ALS.Methods:C9orf72 knockin rats were generated by knockin of 80 G4C2 repeats with human flanking fragments within exon1a and exon1b at the rat C9orf72 locus.Protein expression was detected by western blot.Motor coordination and grip force were measured using a Rotarod test and a grip strength test.Neurodegeneration was assessed by Nissl staining with cresyl violet.Results:C9orf72 haploinsufficiency reduced C9orf72 protein expression 40%in the cerebrum,cerebellum and spinal cords from knockin rats(P<.05).The knockin(KI)rats developed motor deficits from 4 months of age.Their falling latencies and grip force were decreased by 67%(P<.01)and 44%(P<.01),respectively,at 12 months of age compared to wild-type(WT)mice.The knockin of the hexanucleotide repeat expansion(HRE)caused a 47%loss of motor neurons in the spinal cord(P<.001)and 25%(5/20)of female KI rats developed hind limb paralysis at 13 to 24 months.Conclusion:Motor defects in KI rats may result from neurotoxicity caused by HRE and the resulting reduction in C9orf72 protein due to haploinsufficiency.These KI rats could be a useful model for investigating the contributions of loss-of-function to neurotoxicity in C9orf72-related ALS.
出处 《Animal Models and Experimental Medicine》 CSCD 2020年第3期237-244,共8页 动物模型与实验医学(英文)
基金 National Natural Science Foundation of China(81571222),CAMS Innovation Fund for Medical Sciences(CIFMS,2016-I2M-1-004) Beijing Municipal Natural Science Foundation(7172135)。
  • 相关文献

参考文献2

二级参考文献11

  • 1Cui X, Ji D, Fisher DA, et al. Nat Biotechnol2011; 29:64-67. 被引量:1
  • 2Brown AJ, Fisher DA, Kouranova E, et al. Nat Methods 2013; 10:638- 640. 被引量:1
  • 3Tesson L, Usal C, Menoret S, et al. Nat Biotechnol 2011; 29:695-696. 被引量:1
  • 4Li W, Teng F, Li T, et al. Nat Biotechnol 2013; 31:684-686. 被引量:1
  • 5Li D, Qiu Z, Shao Y, et al. Nat Biotechnol 2013; 31:681-683. 被引量:1
  • 6Bedell VM, Wang Y, Campbell JM, et al. Nature 2012; 491:114-118. 被引量:1
  • 7Yang H, Wang H, Shivalila CS, et al. Cell 2013; 154:1370-1379. 被引量:1
  • 8Law JA, Jacobsen SE. Nat Rev Genet 2010; 11:204-220. 被引量:1
  • 9Sapranauskas R, Gasiunas G, Fremaux C, et al. Nucleic Acids Res 2011; 39:9275-9282. 被引量:1
  • 10Shen B, Zhang J, Wu H, et al. Cell Res 2013; 23:720-723. 被引量:1

共引文献46

同被引文献16

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部