摘要
在假设弹性模量沿垂直向上方向按幂函数分布的前提下,以Euler梁理论为基础建立了中间铰接功能梯度梁受横向集中载荷时的有限元静力学方程,得到了梯度指数变化时梁跨度上各点的横向位移及其转角,比较了相同梯度指数下是否存在铰接对横力弯曲的影响,结果表明:随着材料梯度指数的增大,梁的横向位移和转角相应增大;铰接存在时对梁的横向弯曲影响显著。
Based on the Euler beam theory,the finite element statics equations of the centrally hinged functionally graded beam under transverse concentrated load were established under the assumption that the elastic modulus is distributed as a power function along the vertical upward direction.The transverse displacements and angles of each point on the beam span with gradient index change were obtained.The influence of hinge joint on transverse force bending under the same gradient index was compared.The results show that with the increase of the material gradient index,the transverse displacement and rotation angle of the beam increase correspondingly,and the transverse bending of the beam is significantly affected by the existence of hinge joint.
作者
随岁寒
王茜
刘晓丽
娄光路
SUI Suihan;WANG Qian;LIU Xiaoli;LOU Guanglu(School of Mechanical Engineering,Shangqiu Institute of Technology,Shangqiu 476000,China)
出处
《新乡学院学报》
2020年第9期57-59,共3页
Journal of Xinxiang University
关键词
功能梯度铰接梁
有限元静力学方程
横力弯曲
转角
functionally graded hinged beam
finite element statics equation
transverse force bending
rotation angle