期刊文献+

基于图像处理的钢轨伤损分类算法研究 被引量:5

Research on Classification of Rail Defects Based on Image Processing Algorithm
下载PDF
导出
摘要 钢轨伤损的种类众多且形态各异,即便对于同类伤损,在超声波钢轨探伤检测软件中形成的B显图像也会存在差异,而当某类伤损的B显图像变化超出一定范围后,检测软件便无法识别该伤损的类别。因此,提出一种基于图像处理的钢轨伤损分类算法,其采用Tamura纹理特征与局部二值模式(local binary pattern,LBP)相结合的算法提取伤损B显图像的特征值并组成特征向量,使得作为分类器的支持向量机(supportvector machine,SVM)能够对不同种类伤损的特征向量进行训练,从而用训练后的最优分类函数预测未训练过的待测伤损的类别。试验结果表明,所提算法在钢轨伤损图像分类方面实现了较高的分类准确率。 There are many types and different shapes of rail defects.Even for the same type of defect,there are differences in the B-Scan images of the ultrasonic rail defect detection software.When the B-Scan image of a certain type of defect changes over a certain range,the detection software cannot identify this type of defect.Therefore,a classification for rail defects based on image processing algorithm was proposed.Firstly,the Tamura texture feature algorithm was combined with the local binary pattern algorithm to extract the feature values of the defect images,and form feature vectors.Secondly,the feature vectors of different kinds of defects were trained by support vector machine,and the optimal classification function was obtained.Finally,the category of untrained defects could be predicted by the optimal classification function.The experimental results showed that the proposed algorithm achieved high accuracy in the classification of rail defect images.
作者 黄梦莹 罗江平 王文星 曹经纬 HUANG Mengying;LUO Jiangping;WANG Wenxing;CAO Jingwei(Zhuzhou Times Electronic Technology Co.,Ltd.,Zhuzhou,Hunan 412007,China)
出处 《机车电传动》 北大核心 2020年第4期41-46,53,共7页 Electric Drive for Locomotives
关键词 钢轨 Tamura纹理特征 LBP 特征提取 SVM 钢轨伤损分类 rail Tamura texture feature LBP feature extraction SVM rail defect classification
  • 相关文献

参考文献2

二级参考文献14

  • 1Bartlett MS,Movellan JR,Sejnowski TJ.Face recognition by independent component analysisIEEE Transactions on Neural Networks,2002. 被引量:1
  • 2Hyvarinen A.Fast and robust fixed-point algorithms for independent component analysis,1999(03). 被引量:1
  • 3Jing Yu,Zengchang Qin,Tao Wan,Xi Zhang.Feature integration analysis of bag-of-features model for image retrieval[J]. Neurocomputing . 2013 被引量:1
  • 4O. Déniz,G. Bueno,J. Salido,F. De la Torre.Face recognition using Histograms of Oriented Gradients[J]. Pattern Recognition Letters . 2011 (12) 被引量:1
  • 5Yanwei Pang,Yuan Yuan,Xuelong Li,Jing Pan.Efficient HOG human detection[J]. Signal Processing . 2010 (4) 被引量:1
  • 6Ahonen T,Hadid A,Pietikainen M.Face recognition with local binary patterns. Proceedings of the European Conference on Computer Vision . 2004 被引量:1
  • 7Belhumeur PN,Hespanha JP,Kriegman DJ.Eigenfaces vs Fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence . 1997 被引量:1
  • 8A. Suruliandi,K. Meena,R. Reena Rose.Local binary pattern and its derivatives for face recognition. IET COMPUTER VISION . 2012 被引量:1
  • 9王玮,黄非非,李见为,冯海亮.使用多尺度LBP特征描述与识别人脸[J].光学精密工程,2008,16(4):696-705. 被引量:52
  • 10高涛,何明一,戴玉超,白磷.多级LBP直方图序列特征的人脸识别[J].中国图象图形学报,2009,14(2):202-207. 被引量:26

共引文献70

同被引文献32

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部