期刊文献+

基于数据关联分析的低压配电网拓扑识别方法 被引量:50

Topology identification method of low voltage distribution network based on data association analysis
下载PDF
导出
摘要 文中介绍了一种基于数据关联分析的低压配电网拓扑识别方法。基于低压配电网停电事件、恢复上电事件及地理位置信息,将待识别低压配电网划分为:单一配电变压器停电台区、由于10 kV配电线路停电引起的多个配变停电台区和未停过电台区。在每类台区内筛选特征电压序列,并利用Tanimoto相似度系数计算各分组内配电变压器、分支箱、表箱、用户智能电能表之间相关性和非相关性,从而实现低压配电网拓扑识别;结合同一配电变压器台区内停电与带电状态、停电时长、地理位置、供电半径等台区拓扑校验规则,对识别出的拓扑进行校验。通过实际案例证明所提出的方法能够解决现有基于大数据挖掘方法计算量大、计算结果不准确、无法校验等问题,实现了配电变压器台区拓扑的高效、准确识别,提升了配电网的信息化水平和数据质量。 This paper introduces a topology identification method of low-voltage distribution network based on data association analysis.The low-voltage distribution network to be identified is divided into single distribution transformer blackout station area,multiple distribution transformer blackout station areas due to 10kV distribution line blackout and non-blackout station areas based on low-voltage distribution network blackout event,restoration power event and geographic location information.The characteristic voltage sequence in each type of station area is filtered,and the Tanimoto similarity coefficient is adopted to calculate the correlation and non-correlation between distribution transformer,branch box,meter box and smart meter in each group,so as to achieve the topology identification of the low-voltage distribution network.And then,the identified topology can be verified by combining the topology verification rules of the same distribution transformer station area with the outage and live states,outage duration,geographical location,power supply radius and so on.The actual case proves that the proposed method can solve the problems of large amount of calculation,inaccuracy of calculation results,and inability to verify based on the existing big data mining methods,which realizes the efficient and accurate identification of distribution transformer substation topology,and improves the informatization level and data quality of distribution network.
作者 杨志淳 沈煜 杨帆 乐健 宿磊 雷杨 Yang Zhichun;Shen Yu;Yang Fan;Le Jian;Su Lei;Lei Yang(State Grid Hubei Electric Power Research Institute,Wuhan 430077,China;School of Electrical Engineering and Automation,Wuhan University,Wuhan 430072,China)
出处 《电测与仪表》 北大核心 2020年第18期5-11,35,共8页 Electrical Measurement & Instrumentation
关键词 低压配电网 物联网 拓扑识别 关联分析 拓扑校验 low voltage distribution network Internet of things topology identification association analysis topology verification
  • 相关文献

参考文献12

二级参考文献146

共引文献515

同被引文献551

引证文献50

二级引证文献142

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部