摘要
为了方便有限拓扑的运算、数据压缩和数据存储,需要对拓扑进行编码和解码.如果每一个n元集合用n位二进制数表示,数据量相当庞大,因为离散拓扑有2^n个子集,也就是最多需要n2^n位二进制数(n2^n-3个字节)表示一个拓扑.对拓扑中的子集用二进制数的占位编码,每个拓扑都用2^n-2位二进制数表示,再对拓扑二进制数进行去重压缩,可以大大节省存储空间,并且信息更安全.实验表明,当n=8时,压缩率可以达到7.54%,编码算法非常有效.
For the convenience of the arithmetic in the finite topology,the data compression and storage,it′s necessary to encode and decode the topology.Let every n-bit binary number denote an n-set,the data is extremely large because the discrete topology has 2n subsets which require a binary number up to n2n bits(n2n-3 bytes).By the subsets coded in binary separate-code,every topology is represented by a 2n-2 bits binary number.Next step is the de-duplication compression of topological binary numbers.Now storage space can be greatly saved and information is safer.Experiments show that the coding algorithm is quite efficient.
作者
陈建兵
梁立
叶志霞
CHEN Jian-bing;LIANG Li;YE Zhi-xia(Department of Informatization Management,Yunnan Normal University,Kunming 650500,China;School of Information,Yunnan Normal University,Kunming 650500,China)
出处
《云南师范大学学报(自然科学版)》
2020年第5期42-46,共5页
Journal of Yunnan Normal University:Natural Sciences Edition
基金
国家自然科学基金资助项目(61562093)
云南省应用基础研究计划重点资助项目(2016FA024)
云南省教育厅科学研究基金资助项目(2017ZZX073)。
关键词
有限拓扑
占位编码
解码
压缩
Finite topology
Separate-code
Decode
Compression