期刊文献+

基于遗传算法的K-means聚类改进研究 被引量:4

Research on Improvement of K-means Clustering Based on Genetic Algorithm
下载PDF
导出
摘要 在传统的K-means算法中,K值和初始聚类中心往往凭人的经验或随机选取,算法对选取结果又比较敏感,同时算法易陷入局部最优。论文针对这些不足,利用遗传算法的全局寻优特性和自适应搜索概率技术等优势,改善K-means聚类方式。仿真实验表明,新算法在平均迭代次数和准确率方面优于传统K-means算法。 In the traditional K-means algorithm,the K value and the initial clustering center are often selected by human ex⁃perience or random.The algorithm is sensitive to the selection result,and the algorithm is easy to fall into local optimum.In view of these shortcomings,this paper uses the advantages of genetic algorithm global optimization and adaptive search probability technolo⁃gy to improve the K-means clustering method.Simulation experiments show that the new algorithm is superior to the traditional K-means algorithm in terms of average iteration number and accuracy.
作者 冯永亮 李浩 FENG Yongliang;LI Hao(School of Information Engineering,Xi'an University,Xi'an 710065;Xi'an Internet of Things Application Engineering Laboratory,Xi'an University,Xi'an 710065)
出处 《计算机与数字工程》 2020年第8期1831-1834,1839,共5页 Computer & Digital Engineering
基金 陕西省自然科学基金项目(编号:2018JM6100) 陕西省教育厅科学研究计划项目(编号:18JK1149) 西安市科技计划重点项目(编号:2017CGWL13)资助。
关键词 K-MEANS 聚类 遗传算法 算子 K-means clustering genetic algorithm operator
  • 相关文献

参考文献9

二级参考文献18

  • 1李莉.基于Nash均衡的自适应遗传算法[J].计算机工程与应用,2004,40(33):86-88. 被引量:5
  • 2龚纯,王正林.精通MAATLAB最优化计算[M].北京:电子工业出版社,2009:313-343. 被引量:1
  • 3Patel R, Raghuwanshi M M, Jaiswal A N.Modifying genetic algorithm with species and sexual selection by using K-means algorithm[C]//2009 IEEE International Advance Computing Conference,2009:114-119. 被引量:1
  • 4Kudova EClustering genetic algorithm[C]//18th International Workshop on Database and Expert Systems Applications, 2007:138-142. 被引量:1
  • 5Bosco G L.PGAC:a parallel genetic algorithm for data clustering[C]//Proceedings of the Seventh International Workshop on Computer Architecture for Machine Perception,2005. 被引量:1
  • 6Ali Kamrani, Wang Rong, Ricardo Gonzalez. A Genetic Algorithm Methodology for Data Mining and Intelligent Knowledge Acquisition[J]. Computers & Industrial Engineering,2001,40:361-377. 被引量:1
  • 7Bandyopadhyay S, Maulik U. Genetic Clustering for Automatic Evolution of Clusters and Application to Image Classification[J]. Pattern Recognition, 2002,35:1197-1208. 被引量:1
  • 8Richard J Roiger, Michael W Geatz. Data Mining a Tutorial-based Primer[M]. 北京:清华大学出版社,2003. 被引量:1
  • 9贾兆红,唐俊.一种基于混合遗传算法的聚类方法[J].计算机应用与软件,2008,25(4):82-83. 被引量:5
  • 10赖玉霞,刘建平,杨国兴.基于遗传算法的K均值聚类分析[J].计算机工程,2008,34(20):200-202. 被引量:72

共引文献46

同被引文献42

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部