摘要
研究了时标上的Leakage项变时滞双向联想记忆(BAM)神经网络系统,给出了其概周期解存在性、唯一性和全局指数稳定性的充分条件。另外还给出了一个例子和数值模拟来说明得到结果的正确性。
The almost-periodic solutions for BAM neural networks with time-varying delays in leakage terms on time scales are concerned.Some sufficient conditions about the existence,uniqueness and global exponential stability of almost-periodic solutions are given.An example and numerical simulations are established to illustrate the feasibility and effectiveness of the results.
作者
高瑾
林园
王其如
GAO Jin;LIN Yuan;WANG Qiru(School of Computer Sciences,Shenzhen Institute of Information Technology,Shenzhen 518172,China;Department of Public Courses,Shenzhen Institute of Information Technology,Shenzhen 518172,China;School of Mathematics,Sun Yat-sen University,Guangzhou 510275,China)
出处
《中山大学学报(自然科学版)》
CAS
CSCD
北大核心
2020年第5期29-39,共11页
Acta Scientiarum Naturalium Universitatis Sunyatseni
基金
国家自然科学基金(11671406)
深圳信息职业技术学院校级科研培育项目(QN201703)。
关键词
双向联想记忆神经网络
时标
概周期解
全局指数稳定性
BAM neural networks
time scales
almost-periodic solutions
global exponential stability