摘要
用Krasnoselskii不动点定理和Gronwall不等式,讨论Banach空间中分数阶脉冲积-微分方程解的存在性和唯一性问题,得到了其解的e指数型Ulam-Hyers稳定性,并用实例说明所得结论的适用性.
By using Krasnoselskii’s fixed point theorem and Gronwall inequal ity,we discussed the existence and uniqueness of solutions for fractional impulsive integro-differential equations,and obtained the exp-type Ulam-Hyers stability of these solutions.The applicability of the obtained conclusions was illustrated by an example.
作者
赵彦霞
杨和
ZHAO Yanxia;YANG He(College of Mathematics and Statistics,Northwest Normal University,Lanzhou 730070,China)
出处
《吉林大学学报(理学版)》
CAS
北大核心
2020年第5期1055-1065,共11页
Journal of Jilin University:Science Edition
基金
国家自然科学基金(批准号:11701457).