期刊文献+

基于改进灰狼优化算法的医学数据特征选择应用研究 被引量:7

Application Research of Medical Data Feature Selection Based on Improved Grey Wolf Optimization Algorithm
原文传递
导出
摘要 针对灰狼优化算法收敛速度慢、寻优精度低、易陷入局部最优等缺陷,提出一种基于差分进化(DE)的灰狼优化算法(GWODE).该算法在灰狼优化算法的基础上,引进差分进化机制生成变异种群,通过调节缩放因子和交叉概率因子避免算法陷入局部最优.引入精英保留策略,根据进化后狼群适应度进行排序,淘汰适应度差的灰狼,同时再引进相同数量灰狼确保种群的竞争力.本文将该算法应用于生物医学诊断方面.实验结果表明,本文提出的算法性能优于实验对比的特征选择算法. In real application,Grey Wolf Optimizer may encounter lots of problems,such as slow convergence speed,low convergence precision and easy to fall into local optimal solution.To avoid these problems,we propose a novel method named Grey Wolf Optimizer based on Differential Evolution(GWODE).In GWODE,differential evolution is introduced to produce population variation,and the adjustment of scale factor and cross probability factor is adopted to avoid local optimal solution.To pursue higher competitiveness,the wolf of low fitness value will be eliminated,and the same number of new wolves will be brought.Finally,we introduce this method into biomedical diagnosis application.Experiments results show that our method gets a better performance than the compared methods.
作者 王俊 冯军 张戈 王建林 王胜 郑泰皓 WANG Jun;FENG Jun;ZHANG Ge;WANG Jianlin;WANG Sheng;ZHENG Taihao(School of Computer and Information Engineering,Henan University,Henan Kaifeng475004,China)
出处 《河南大学学报(自然科学版)》 CAS 2020年第5期570-578,共9页 Journal of Henan University:Natural Science
基金 国家自然科学基金资助项目(61802114,61802113) 河南省高等院校重点科研项目(18A120001,18A520021)。
关键词 灰狼优化算法 差分进化 生物医学诊断 特征选择 gray wolf optimization algorithm differential evolution biomedical diagnosis feature selection
  • 相关文献

参考文献8

二级参考文献106

  • 1赵凌志,刘颖,覃征.Weighted SVM在蛋白质磷酸化位点预测中的应用[J].计算机工程与应用,2006,42(3):155-157. 被引量:10
  • 2高海昌,冯博琴,侯芸,朱利.自适应变异的混合粒子群优化策略及其应用[J].西安交通大学学报,2006,40(6):663-666. 被引量:6
  • 3周艳平,顾幸生.差分进化算法研究进展[J].化工自动化及仪表,2007,34(3):1-6. 被引量:72
  • 4YVAN S,INAKI I,PEDRO L. A review of feature selection techniques in biolnformaties [ J ]. Bioinformatics, 2007, 23 :2507-2517. 被引量:1
  • 5DELCHER A L, BRATKE K A, POWERS E C. Identifying bacterial genes and endosymbiont DNA with glimmer[J]. Bioinformatics,2007,23:673-679. 被引量:1
  • 6SAEYS Y. In search of the small ones: Improved prediction of short exons in vertebrates, plants, fungi, and protists[J].Bioinformaties, 2007.23,414-420. 被引量:1
  • 7KELES S. Identification of regulatory elements using a feature selection method[J]. Bioinformatics, 2002, 18: 1167- 1175. 被引量:1
  • 8BEN-DOR A. Tissue classification with gene expression profiles[J]. Comput Biol, 2000,7:559-584. 被引量:1
  • 9DEGROEVE So Feature subset selection for splice site prediction[J]. Bioinformatics, 2002,18 (2) : 75-83. 被引量:1
  • 10GONG B. Application of genetic algorlthm--support vector machine hybrid for prediction of clinical phenotypes based on geneome-wide SNP profiles of sib pairs[C]. In Lecture Notes in Computer Science 3614, Springer, Berlin/Heidelberg. 2005:830-835. 被引量:1

共引文献130

同被引文献59

引证文献7

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部