期刊文献+

Dynamics of bioconvection flow of micropolar nanoparticles with Cattaneo-Christov expressions 被引量:2

下载PDF
导出
摘要 A numerical analysis is performed to analyze the bioconvective double diffusive micropolar non-Newtonian nanofluid flow caused by stationary porous disks.The consequences of the current flow problem are further extended by incorporating the Brownian and thermophoresis aspects.The energy and mass species equations are developed by utilizing the Cattaneo and Christov model of heat-mass fluxes.The flow equations are converted into an ordinary differential model by employing the appropriate variables.The numerical solution is reported by using the MATLAB builtin bvp4c method.The consequences of engineering parameters on the flow velocity,the concentration,the microorganisms,and the temperature profiles are evaluated graphically.The numerical data for fascinating physical quantities,namely,the motile density number,the local Sherwood number,and the local Nusselt number,are calculated and executed against various parametric values.The microrotation magnitude reduces for increasing magnetic parameters.The intensity of the applied magnetic field may be utilized to reduce the angular rotation which occurs in the lubrication processes,especially in the suspension of flows.On the account of industrial applications,the constituted output can be useful to enhance the energy transport efficacy and microbial fuel cells.
出处 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第9期1333-1344,共12页 应用数学和力学(英文版)
  • 相关文献

参考文献5

二级参考文献41

  • 1Connor, J. J., Boyd, J., and Avallone, E. A. Standard Handbook of Lubrication Engineering,McGraw-Hill, New York (1968). 被引量:1
  • 2Elcrat, A. R. On the radial flow of a viscous fluid between porous disks. Archive for RationalMechanics and Analysis, 61, 91-96 (1976). 被引量:1
  • 3Rasmussen, H. Steady viscous flow between two porous disks. Zeitschrift fUr Angewandte Mathe-matik und Physik, 21, 187-195 (1970). 被引量:1
  • 4Berman, A. S. Laminar flow in channels with porous walls. Journal of Applied Physics, 24, 1232-1235 (1953). 被引量:1
  • 5Eringen, A. C. Theory of thermomicrofluids. Journal of Mathematical Analysis and Applications,38, 480-496 (1972). 被引量:1
  • 6Aero, E. L., Bulygin, A. N., and Kuvshinskii, E. V. Asymmetric hydromechanics. Journal ofApplied Mathematics and Mechanics, 29(2), 297-308 (1965). 被引量:1
  • 7Anwar, K.M., Ashraf, M., and Syed, K. S. Numerical solution of steady viscous flow of a micropolarfluid driven by injection between two porous disks. Applied Mathematics and Computation, 179,1-10 (2006). 被引量:1
  • 8Ashraf, M., Anwar, K. M., and Syed, K. S. Numerical simulation of flow of a micropolar fluidbetween a porous disk and a non-porous disk. Applied Mathematical Modelling, 33, 1933-1943(2009). 被引量:1
  • 9Ariman, T., Turk, M. A., and Sylvester, N. D. Microcontinuum fluid mechanics—a review. In-ternational Journal of Engineering Science, 11, 905-930 (1973). 被引量:1
  • 10Ariman, T., Turk, M. A., and Sylvester, N. D. Application of microcontinuum fluid mechanics—areview. International Journal of Engineering Science, 12, 273-293 (1974). 被引量:1

共引文献5

同被引文献3

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部