期刊文献+

Convolutional Multi-Head Self-Attention on Memory for Aspect Sentiment Classification 被引量:5

下载PDF
导出
摘要 This paper presents a method for aspect based sentiment classification tasks, named convolutional multi-head self-attention memory network(CMA-Mem Net). This is an improved model based on memory networks, and makes it possible to extract more rich and complex semantic information from sequences and aspects. In order to fix the memory network’s inability to capture context-related information on a word-level,we propose utilizing convolution to capture n-gram grammatical information. We use multi-head self-attention to make up for the problem where the memory network ignores the semantic information of the sequence itself. Meanwhile, unlike most recurrent neural network(RNN) long short term memory(LSTM), gated recurrent unit(GRU) models, we retain the parallelism of the network. We experiment on the open datasets Sem Eval-2014 Task 4 and Sem Eval-2016 Task 6. Compared with some popular baseline methods, our model performs excellently.
出处 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2020年第4期1038-1044,共7页 自动化学报(英文版)
基金 supported by the National Key Research and Development Program of China(2018YFC0830700)。
  • 相关文献

同被引文献23

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部