期刊文献+

基于字符级CNN技术的公共政策网民支持度研究 被引量:8

Research on Public Policy Support Based on Character-level CNN Technology
原文传递
导出
摘要 【目的】提出更适用公共政策评价的网民情感分类指标,引入深度学习技术研究网民立场的自动化识别和支持度研判问题。【方法】选取三个不同领域不同类型的重要公共政策作为研究对象,对微博数据进行采集、清洗和标注;运用立场分析方法研判三个政策的网民支持度;构建基于字符级卷积神经网络(CNN)技术的文本分类模型对实验数据集进行训练,并对实验结果进行对比检验解读。【结果】该模型在三组数据测试集的综合评价指标上均取得优秀表现,当模型稳定后有两组数据集F1值在0.8以上,一组数据集F1值在0.6以上;且耗时较循环神经网络(RNN)模型更短,训练时间差距达数十倍。【局限】数据样本量和政策覆盖类型有限,网民支持度计算方法有待进一步深化。【结论】立场分类方法和字符级CNN技术在公共政策评价的效度和效率上有较好表现,尤其在应急突发性政策评价方面能够发挥明显作用。 [Objective] This paper proposed an index of Internet users’ sentiment classification which is more suitable for public policy evaluation, and explored the automatic method for Internet users’ stance detection based on the deep learning technology. [Methods] Three important public policies of different types and in different fields were selected as research objects. After collecting, cleaning and labeling the related data of Sina Weibo, this paper analyzed the three policies’ support on Internet, and constructed a text classification model based on the character-level convolutional neural network(CNN) technology. Meanwhile this paper compared and interpretd the effectiveness and efficiency of the experimental results. [Results] The results showed that our model can achieve good performance on the indicators of the accuracy and recall rate of the three datasets. There were two datasets with F1 value above 0. 8 and one dataset with F1 value above 0. 6. Meanwhile the model took less time than the recurrent neural network(RNN) model, and the training time gap is dozens of times. [Limitations] The data sample size and policy coverage are limited, and the calculation method for Internet users’ support needs to be further studied. [Conclusions] The stance classification method and the character-level CNN technology perform well in the effectiveness and efficiency of public policy evaluation, and may play a significant role especially in the evaluation of emergency policies.
作者 邱尔丽 何鸿魏 易成岐 李慧颖 Qiu Erli;He Hongwei;Yi Chengqi;Li Huiying(Big Data Development Department,State Information Center,Beijing 100045,China;Department of Information Management,Peking University,Beijing 100871,China)
出处 《数据分析与知识发现》 CSSCI CSCD 北大核心 2020年第7期28-37,共10页 Data Analysis and Knowledge Discovery
基金 国家社会科学基金青年项目“使用大数据方法开展社会政策评估的探索性研究”(项目编号:18CSH018)的研究成果之一。
关键词 公共政策 立场分析 卷积神经网络 微博 大数据 Public Policy Stance Detection Convolutional Neural Network Weibo Big Data
  • 相关文献

参考文献5

二级参考文献45

  • 1左衍涛,王登峰.汉语情绪词自评维度[J].心理科学进展,1997,7(2):56-60. 被引量:18
  • 2钟杰,钱铭怡.中文情绪形容词检测表的编制与信效度研究[J].中国临床心理学杂志,2005,13(1):9-13. 被引量:46
  • 3Bollen, J., Mao, H. N., & Zeng, X. J. (2011). Twitter mood predicts the stock market.Journal of Computational Science, 2, 1-8. 被引量:1
  • 4Das, S., & Chen, M. (2001). Yahoo for amazon: Extracting market sentiment from stock message boards. In Ptceedings of the Asia Pacific Finance Assiation Annual Conference, Bangkok. 被引量:1
  • 5Dodds, P., Harris, K., Kloumann, I., Bliss, C., & Danforth, C. (2011). Temporal patterns of happiness and information in a global social network: Hedonometrics and twitter. PloS ONE, 6, 1-26. 被引量:1
  • 6Ekman, P., & Friesen, W. V. (1971).Constants across cultures in the face and emotion. Journal of Personality and Social Psychology, 17, 124-129. 被引量:1
  • 7Colder, A. S., & Macy, W. M. (2011). Diurnal and seasonal mood vary with work, sleep, and day length across diverse cultures. Science, 333, 1878-1881. 被引量:1
  • 8Lansdall-Welfare, T., Lampos, V., & Cristianini, N. (2012). Effects of the recession on public mood in the UK. Paper presented at tbe meeting of the International World Wide Web Conference, Lyon, France. 被引量:1
  • 9Matsumoto, D. (2005). Development and validation of a measure of display rule knowledge: The display rule assessment inventory. Emotion, 5, 23-40. 被引量:1
  • 10Pepe, A., & Bollen, J. (2008). Between conjecture and memento: Shaping a collective emotional perception of the future. Paper presented at the meeting of the AAAI Spnng Symposiumon Emotion, Personality, and Social Behavior, Chicago. 被引量:1

共引文献117

同被引文献197

引证文献8

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部