期刊文献+

An Intelligent Early Warning Method of Press-Assembly Quality Based on Outlier Data Detection and Linear Regression

一种基于离群数据检测和线性回归的压装质量智能预警方法
下载PDF
导出
摘要 Focusing on controlling the press-assembly quality of high-precision servo mechanism,an intelligent early warning method based on outlier data detection and linear regression is proposed.Linear regression is used to deal with the relationship between assembly quality and press-assembly process,then the mathematical model of displacement-force in press-assembly process is established and a qualified press-assembly force range is defined for assembly quality control.To preprocess the raw dataset of displacement-force in the press-assembly process,an improved local outlier factor based on area density and P weight(LAOPW)is designed to eliminate the outliers which will result in inaccuracy of the mathematical model.A weighted distance based on information entropy is used to measure distance,and the reachable distance is replaced with P weight.Experiments show that the detection efficiency of the algorithm is improved by 5.6 ms compared with the traditional local outlier factor(LOF)algorithm,and the detection accuracy is improved by about 2%compared with the local outlier factor based on area density(LAOF)algorithm.The application of LAOPW algorithm and the linear regression model shows that it can effectively carry out intelligent early warning of press-assembly quality of high precision servo mechanism. 针对高精度伺服机构压装质量控制难度大的问题,提出了一种基于离群数据检测和线性回归的智能质量预警方法。采用线性回归分析装配质量与压装过程之间的关系,建立了压装的“位移-力”数学模型,并定义了合格的压装力范围对装配质量进行控制。为了对压装过程中的“位移-力”原始数据集进行预处理,本文设计了一种改进的基于区域密度和P权值的局部离群因子(Local outlier factor based on area density and P weight,LAOPW)检测算法,以剔除导致线性回归数学模型不准确的离群值。该算法引入了基于信息熵的加权距离进行距离度量,并用P权值代替可达距离。实验结果表明,该算法在检测效率上比传统的局部离群因子(Local outlier factor,LOF)算法提高了5.6 ms,而检测准确率比基于区域密度的局部离群因子(Local outlier factor based on area density,LAOF)算法改善了2%左右。将本文提出的LAOPW算法和线性回归模型应用于高精度伺服机构压装质量控制,能够有效进行压装质量智能预警。
作者 XUE Shanliang LI Chen 薛善良;李晨(南京航空航天大学计算机科学与技术学院/人工智能学院,中国南京211106)
出处 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第4期597-606,共10页 南京航空航天大学学报(英文版)
关键词 quality early warning outlier data detection linear regression local outlier factor based on area density and P weight(LAOPW) information entropy P weight 质量预警 离群数据检测 线性回归 基于区域密度和P权值的局部离群因子 信息熵 P权值
  • 相关文献

参考文献6

二级参考文献62

共引文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部