期刊文献+

改进的ICA_R算法在音频去噪中的应用 被引量:2

Application of Improved ICA_R Algorithm in Audio Denoising
下载PDF
导出
摘要 详细分析了ICA算法和ICA_R算法,并对ICA_R算法在音频去噪的应用中进行改进,通过实验对比证明了改进后的ICA_R算法在对噪声的消减上效果更好。 This paper analyzes the ICA algorithm and ICA_R algorithm in detail,and improves the ICA_R algorithm in the application of audio denoising.The experimental results show that the improved ICA_R algorithm has better effect on audio denoising.
作者 赵祥坤 石莉 陈志国 王晓丽 ZHAO Xiang-kun;SHI Li;CHEN Zhi-guo;WANG Xiao-li(Mudanjiang Medical University,Mudanjiang 157011,China)
机构地区 牡丹江医学院
出处 《软件》 2020年第8期34-36,共3页 Software
基金 黑龙江省教育厅基本科研业务费项目:基于关联规则的电子病历数据挖掘应用研究(项目编号:2018-KYYWFMY-0096)。
关键词 改进的ICA_R 音频识别 音频去噪 Improved ICA-R Audio-recognition Audio denoising
  • 相关文献

参考文献6

二级参考文献65

  • 1杨晓敏,吴炜,干宗良,严斌宇,张莹莹.一种基于稀疏字典和残余字典的遥感图像超分辨重建算法[J].四川大学学报(工程科学版),2015,47(3):71-76. 被引量:5
  • 2Comon P. Independent component analysis, a new concept? Signal Processing, 1994, 36(3): 287-314. 被引量:1
  • 3Hyvarinen A, Karhunen J, and Oja E. Independent component analysis. New York: John Wiley, 2001, chapter1, chapter8. 被引量:1
  • 4Cichocki A and Amari S. Adaptive Blind Signal and Image Processing: Learning Algorithms and Applications. Chichester: John Wiley, 2003, chapter1, chapter6. 被引量:1
  • 5Lin Q H, Zheng Y R, Yin F L, Liang H L, and Calhoun V D. A fast algorithm for one-unit ICA-R. Information Sciences, 2007, 177(5): 1265-1275. 被引量:1
  • 6Lu Wei and Rajapakse J C. ICA with Reference. Proc. Third Int. Conf. on Independent Component Analysis and Blind Source Separation (ICA2001), San Diego, California, 2001: 120-125. 被引量:1
  • 7Lu Wei and Rajapakse J C. Approach and applications of constrained ICA. IEEE Trans. on Neural Networks, 2005, 16 (1): 203-212. 被引量:1
  • 8Amari S, Douglas S C, Cichocki A, and Yang H H. Multichannel blind deconvolution and equalization using the natural gradient. First IEEE Signal Processing Workshop on Signal Processing Advances in Wireless Communications. Paris, France, 1997: 101-104. 被引量:1
  • 9Calhoun V D, Adali T, Pearlson G D, VanZijl P C M, and Pekar J J. Independent component analysis of fMRI data in the complex domain. Magnetic Resonance in Medicine, 2002, 48(1): 180-192. 被引量:1
  • 10Bingham E and Hyvarinen A. A fast fixed-point algorithm for independent component analysis of complex-valued signals. International Journal of Neural Systems, 2000, 10(1): 1-8. 被引量:1

共引文献38

同被引文献28

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部