期刊文献+

基于FCN和互信息的医学图像配准技术研究 被引量:6

Research on Medical Image Registration Technology Based on FCN and Mutual Information Algorithm
下载PDF
导出
摘要 针对传统配准方法在进行三维多模态图像配准时存在收敛速度较慢、容易陷入极值等问题,提出一种基于全卷积神经网络(Fully Convolutional Networks,FCN)和互信息的配准方法。利用FCN模型提取二维图像深层特征并进行粗配准;将得到的配准结果作为互信息算法的初始搜索点,从而使搜索范围缩小至全局最优解附近;利用互信息算法对参数进一步微调优化,得到最优三维配准结果。实验结果表明,在进行CT-MR图像配准时,所提方法不仅可以大幅度提升配准速度,还能有效避免局部收敛的情况,具有更高的准确性。 Aiming at the problems of slow convergence and easy to fall into local maximum in the traditional registration method for 3D multi-modal image,a method based on Fully Convolutional Networks(FCN)and mutual information algorithm is proposed.The FCN model is used to extract the deep features of 2D images and perform coarse registration.The registration result is used as the initial search point of the mutual information algorithm,which provides a near-optimal initial solution.The mutual information algorithm is used to further fine-tune the parameters to obtain the best 3D registration result.Experiments on the CT-MR image registration show that the proposed method can not only greatly improve the registration speed,but also effectively avoid the local convergence and has higher accuracy.
作者 曾安 王烈基 潘丹 黄殷 ZENG An;WANG Lieji;PAN Dan;HUANG Yin(School of Computers,Guangdong University of Technology,Guangzhou 510006,China;Guangdong Key Laboratory of Big Data Analysis and Processing,Guangzhou 510006,China;Modern Education Technical Center,Guangdong Construction Polytechnic,Guangzhou 510440,China)
出处 《计算机工程与应用》 CSCD 北大核心 2020年第18期202-208,共7页 Computer Engineering and Applications
基金 国家自然科学基金(No.61772143,No.61300107) 广东省自然科学基金(No.S2012010010212) 广州市科技计划项目(No.201601010034,No.201804010278) 广东省大数据分析与处理重点实验室开放基金(No.201801)。
关键词 全卷积神经网络 互信息算法 多模态 三维图像配准 Fully Convolutional Networks(FCN) mutual information algorithm multi-modal three-dimensional image registration
  • 相关文献

参考文献5

二级参考文献41

  • 1毕英伟,邱天爽.一种基于简化PCNN的自适应图像分割方法[J].电子学报,2005,33(4):647-650. 被引量:58
  • 2杨帆,张汗灵.蚁群算法和Powell法结合的多分辨率三维图像配准[J].电子与信息学报,2007,29(3):622-625. 被引量:18
  • 3BENGIO Y, DELALLEAU O. On the expressive power of deep archi- tectures[ C ]//Proc of the 14th International Conference on Discovery Science. Berlin : Springer-Verlag, 2011 : 18 - 36. 被引量:1
  • 4BENGIO Y. Leaming deep architectures for AI[ J]. Foundations and Trends in Machine Learning ,2009,2 ( 1 ) : 1-127. 被引量:1
  • 5HINTON G,OSINDERO S,TEH Y. A fast learning algorithm for deep belief nets [ J ]. Neural Computation ,2006,18 (7) : 1527-1554. 被引量:1
  • 6BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks [ C ]//Proc of the 12th Annual Conference on Neural Information Processing System. 2006:153-160. 被引量:1
  • 7LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning ap- plied to document recognition[ J]. Proceedings of the iEEE, 1998, 86( 11 ) :2278-2324. 被引量:1
  • 8VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[ C ]//Proc of the 25th International Conference on Machine Learning. New York: ACM Press ,2008 : 1096-1103. 被引量:1
  • 9VINCENT P, LAROCHELLE H, LAJOIE I, et aL Stacked denoising autoencoders:learning useftd representations in a deep network with a local denoising criterion [ J ]. Journal of Machine Learning Re- search ,2010,11 ( 12 ) :3371-3408. 被引量:1
  • 10YU Dong, DENG Li. Deep convex net: a scalable architecture for speech pattern classification [ C]//Proc of the 12th Annual Confe-rence of International Speech Comunication Association. 2011 : 2285- 2288. 被引量:1

共引文献623

同被引文献35

引证文献6

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部