期刊文献+

对称理论在解若干非线性问题中的应用 被引量:1

Application of symmetry theory in solving nonlinear problems
下载PDF
导出
摘要 将摄动理论和对称约化理论结合起来对研究扰动非线性方程具有重要的意义.本文利用近似对称约化理论研究了扰动mKdV方程,得到了该方程的各阶近似约化方程和级数约化解.本文还讨论了同伦近似对称方法在求解不可积系统中的应用以及利用对称和守恒律的关系求解非线性系统的无穷多守恒律等问题. The approximate symmetry method,which combines perturbation theory and Lie symmetry approach,proves very effective in solving perturbed nonlinear systems.In this paper,we investigate the perturbed mKdV equation using the approximate symmetry method to obtain its symmetry reduction equations of different orders and series reduction solutions.Also,we discuss the role of approximate homotopy symmetry method in solving non-integrable systems and how to acquire infinitely many conservation laws using the relationship between symmetry and conservation laws.
作者 刘希忠 LIU Xizhong(College of Mathematics,Physics and Information,Shaoxing University,Shaoxing 312000,China)
出处 《宁波大学学报(理工版)》 CAS 2020年第5期77-82,共6页 Journal of Ningbo University:Natural Science and Engineering Edition
基金 国家自然科学基金(11405110).
关键词 对称 摄动理论 近似约化解 守恒律 同伦近似对称 symmetry perturbation theory approximate reduction solution conservation law approximate homotopy method
  • 相关文献

参考文献6

二级参考文献50

  • 1Ablowitz M, Clarkson P 1991 Solitons, Nonlinear Evolution Equations and Inverse Scattering (Cambridge: Cambridge University Press). 被引量:1
  • 2Fushchich W I and Shtelen W M 1989 J. Phys. A: Math. Gen. 22 L887. 被引量:1
  • 3Abdullaev F Kh, Bronski J C and Papanicolaou G 2000 Physica D 135 369. 被引量:1
  • 4Euier N, Shulga M W and Steeb W H 1992 J. Phys. A: Math. Gen. 25 1095. 被引量:1
  • 5Euler M, Euler N and KSler A 1994 J. Phys. A: Math. Gen. 27 2083. 被引量:1
  • 6Euler N and Euler M 1994 Nonlinear Math. Phys. 1 41. 被引量:1
  • 7Fushchich W I and Shtelen W H 1989 J. Phys. A: Math. Gen. 22 887. 被引量:1
  • 8Jiao X Y, Yao R X and Lou S Y 2008 J. Math. Phys. 49 093505. 被引量:1
  • 9Olver P J 1993 Application of Lie Groups to Differential Equation (New York: Springer) vol 107 被引量:1
  • 10Gu C H, Hu H S and Zhou Z X 1999 Darboux Transformarion in Soliton Theory and Its Geometric Applications (Shanghai: Shanghai Science and Technical Publishers) 被引量:1

共引文献23

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部