摘要
主要研究一类三维差分系统的动力学行为。在A>1的情况下,分析了系统正初值解序列的有界性,应用差分方程的基本理论讨论了正平衡点的存在性,稳定性以及全局吸引性。在A=1的情况下,分析了系统正初值解序列的有界性;当m为偶数时,得到了系统阶-2周期解的存在性。最后,利用数值模拟的方法验证了所得结论的正确性。
This paper mainly studies the dynamic behavior of a new kind of three-dimensional subsystem.In the case of A>1,the boundedness of the solution with positive initial values of the system is analyzed.Moreover,the existence,stability and global attractiveness of the positive equilibrium point are discussed.In the case of A=1,the boundedness of the solution with positive initial values is also analyzed.Especially,if m is an even number,the order-2 periodic solution of the system is obtained.The validity of the conclusions is verified by numerical simulations.
作者
成文凯
董玲珍
CHENG Wenkai;DONG Lingzhen(School of Mathematics,Taiyuan University of Technology,Taiyuan 030024,China)
出处
《重庆理工大学学报(自然科学)》
CAS
北大核心
2020年第8期223-231,共9页
Journal of Chongqing University of Technology:Natural Science
基金
教育部科学技术研究重点项目(210030)
山西省自然科学基金项目(2013011002-3)。
关键词
有界性
平衡点
稳定性
阶-2周期解
boundedness
equilibrium point
stability
order-2 periodic solution