期刊文献+

基于APSO的地铁节能运行速度优化研究 被引量:4

Research on optimization of energy-saving operation speed of metro based on APSO
下载PDF
导出
摘要 当前城轨列车多站间节能运行优化研究中,牵引能耗模型未考虑实际运行状态,仅由列车控制力与运行速度2个指标决定,且广泛采用固定运行模式,难以根据实际环境动态调整。依据列车实际运行过程,首先探究运行时间和站间距离对运行能耗的影响,并对同一站间距离的节能运行工况进行分析,研究工况的转换序列,进而重建能耗优化模型,最后采用改进的粒子群算法求解工况转换点,以实现列车速度曲线节能优化。仿真结果表明,重构的能耗优化模型与传统模型对比精度提高了1.16%,且优化后的运行能耗比原固定驾驶策略节省了6.92%,具有更好的节能效果。 In the current research on energy-saving operation optimization of multi-station between urban rail trains,the traction energy consumption model does not consider the actual operating state,and is determined only by two indicators of train control force and running speed,and the fixed operation mode is widely adopted,which is difficult to dynamically adjust according to the actual environment.According to the actual running process of the train,this paper firstly studied the influence of running time and inter-station distance on the running energy consumption,analyzed the energy-saving operating conditions of the distance between the same station,studied the conversion sequence of working conditions,and then reconstructed the energy optimization model.Finally,the improved particle swarm optimization algorithm was used to solve the working condition transition point to realize the energy saving optimization of the train speed curve.The simulation results show that the contrast accuracy of the reconstructed energy optimization model and the traditional model is improved by 1.16%,and the optimized operating energy consumption is 6.92%lower than the original fixed driving strategy,which has better energy saving effect.
作者 杨辉 李莹 周艳丽 YANG Hui;LI Ying;ZHOU Yanli(School of Electrical and Automation,East China Jiaotong University,Nanchang 330013,China;Key Laboratory of Advanced Control and Optimization of Jiangxi Province,Nanchang 330013,China)
出处 《铁道科学与工程学报》 CAS CSCD 北大核心 2020年第8期1926-1934,共9页 Journal of Railway Science and Engineering
基金 国家自然科学基金资助项目(61673172,61663013,61803155)。
关键词 城轨列车 牵引能耗 速度优化 工况转换 改进粒子群算法 urban rail train traction energy consumption speed optimization working condition conversion improved particle swarm algorithm
  • 相关文献

参考文献10

二级参考文献48

共引文献162

同被引文献27

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部