期刊文献+

引入时钟循环神经网络的核相关滤波目标跟踪 被引量:1

OBJECT TRACKING BASED ON KERNEL CORRELATION FILTERING WITH CLOCKWORK RECURRENT NEURAL NETWORK
下载PDF
导出
摘要 针对目标在经历遮挡与运动状态变化场景下的跟踪难点问题,通过在核相关滤波中引入时钟循环神经网络,提出一种新的判别式目标跟踪算法。利用双方向时钟循环神经网络构造置信图以鉴别运动目标是否被遮挡,采用置信图引导时钟循环神经网络的状态更新,从而优化调整后续核相关滤波器的学习过程。在VOT数据集上进行跟踪实验,并与19种主流跟踪算法比较,结果表明:该算法的各项跟踪指标均位于前列,且其跟踪性能显著优于同为相关滤波跟踪的其他算法。 Aiming at the difficult problems of target tracking in the scene of occlusion and changes of motion state,this paper proposes a new discriminant object tracking algorithm by integrating clockwork recurrent neural network into the kernel correlation filtering.The bi-directional clock recurrent neural network was used to construct a confidence map to identify whether a moving target was blocked.The confidence map was used to guide the state update of the clockwork recurrent neural network,so as to optimize and adjust the learning process of the subsequent kernel-related filters.The tracking experiments were carried out on the VOT dataset and compared with 19 mainstream track algorithms.The results show that the tracking indexes of this algorithm are in the forefront,and its performance is significantly better than other algorithms which are also correlation filtering tracking.
作者 吴刚 Wu Gang(School of Computer Engineering,Jinling Institute of Technology,Nanjing 211169,Jiangsu,China;Nanjing Innovation Centre of ITS,Nanjing 211169,Jiangsu,China)
出处 《计算机应用与软件》 北大核心 2020年第9期99-104,145,共7页 Computer Applications and Software
基金 国家自然科学基金青年科学基金项目(61801199) 南京市科委重大项目(201704002)。
关键词 目标跟踪 时钟循环神经网络 核相关滤波 遮挡 Object tracking Clockwork recurrent neural network Kernel correlation filtering Occlusion
  • 相关文献

参考文献3

二级参考文献26

  • 1郑成勇,李红.基于局部灰度特性分析的红外目标检测方法[J].红外与激光工程,2004,33(4):362-365. 被引量:8
  • 2Kinjal A, Darshak G. A survey on moving object detection and tracking in video surveillance system[J]. International Journal of Soft Computing and Engineering(1JSCE), 2012, 05(6): 128-134. 被引量:1
  • 3Wu Y, Lira J, Yang M. Online object tracking: a benchmark [C]//IEEE Conference on Computer Vision and Pattern Recognition, 2013: 2411-2418. 被引量:1
  • 4Hong H, Wang L, Shi Z. Simplified particle PHD filter for multiple-target tracking: algorithm and architecture [J]. Progress in Electromagnetics Research, 2011, 120: 481- 498. 被引量:1
  • 5Wang F, Ye J. A novel fragments-based tracking algorithm using mean shift [C]//IEEE International Conference on Control Automation Robotics and Vision, 2008: 694-698. 被引量:1
  • 6Denman S, Chandran V, Sridharan S. An adaptive optical flow technique for person tracking systems[J]. Pattern Recognition Letters, 2007, 28(10): 1232-1239. 被引量:1
  • 7Bolme D, Beveridge J, Draper B, et al. Visual target tracking using adaptive correlation filters [C]//IEEE Conference on Computer Vision and Pattern Recognition, 2010: 2544-2550. 被引量:1
  • 8Mahalanobis A, Vijaya K, Casasent D. Minimum average correlation energy filters [J]. Applied Optics, 1987, 26(05): 3633-3640. 被引量:1
  • 9Galoogahi H, Sim T, Lucey S. Multi-channel correlation filters[C]//IEEE International Conference on Computer Vision, 2013: 3072-3079. 被引量:1
  • 10Rodriguez A, Boddeti V, Vijaya K, et al. Maximum margin correlation filters: a new approach for localization and classification [J]. IEEE Transaction on Image Processing, 2013, 22(02): 631-643. 被引量:1

共引文献57

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部