摘要
真空封装技术是延伸波长InGaAs探测器的主要封装方法之一,热电制冷器可为延伸波长InGaAs探测器焦平面提供低温环境。测试了基于真空封装技术无热负载条件下二级热电制冷器的性能,研究了二级热电制冷器在不同输入电流(功率)时冷、热端温差与热负载的关系,测试了二级热电制冷器在低温工况下的制冷性能以及二级热电制冷器处于不工作状态时的表观热导率。结果表明,热沉温度为274 K时,冷端可以达到221.4 K并实现77.5 K的冷、热端温差;当输入电流一定时,随着热负载的增加,冷、热端温差呈线性趋势减小,且斜率随着输入电流增大而增大;二级热电制冷器冷、热端温差在较高温度时更大,即制冷性能更好;当温度分别为233.1 K和249.8 K时,表观热导率分别为11.30 W/(m·K)和8.29 W/(m·K)。
Vacuum packaging technology is one of the main packaging methods for extended wavelength InGaAs detectors,thermoelectric coolers used to provide a low temperature environment for the focal plane of extended wavelength InGaAs detectors.The performance of the two stage thermoelectric cooler under the condition of vacuum packaging technology without thermal load was tested.The relationship between the cold and hot end temperature difference and the thermal load of the two stage thermoelectric cooler at different input currents(power)was studied.The refrigeration performance of the two stage thermoelectric cooler under low temperature conditions and the apparent thermal conductivity of the two stage thermoelectric cooler when it is not working were tested.The results show that when the heat sink temperature is 274 K,the cold end can reach 221.4 K and the cold and hot end temperature difference is about 77.5 K.When the input current is constant,as the thermal load increases,the temperature difference between the cold and hot end decreases linearly,and the slope increases with the increase of the input current.The temperature difference between the cold and hot end of the two stage thermoelectric cooler is larger at higher temperatures,that is,the refrigeration performance is better;when the temperature is 233.1 K and 249.8 K,the apparent thermal conductivity is 11.30 W/(m·K)and 8.29 W/(m·K)respectively.
作者
王镇
莫德锋
徐红艳
李雪
杨力怡
赵彤
WANG Zhen;MO De-Feng;XU Hong-Yan;LI Xue;YANG Li-Yi;ZHAO Tong(State Key Laboratory of Transducer Technology,Shanghai Institute of Technical Physics,Chinese Academy of Science,Shanghai 200083,China;Key Laboratory of Infrared Imaging Materials and Detectors,Shanghai Institute of Technical Physics,Chinese Academy of Science,Shanghai 200083,China;University of Chinese Academy of Science,Beijing 100049,China)
出处
《激光与红外》
CAS
CSCD
北大核心
2020年第8期965-969,共5页
Laser & Infrared
基金
中国科学院青年促进会项目(No.2018274)资助。
关键词
INGAAS探测器
真空封装
热电制冷器
表观热导率
InGaAs detector
vacuum packaging
thermoelectric cooler
apparent thermal conductivitys