期刊文献+

不确定性的激励型需求响应对配电网可靠性的影响 被引量:7

Reliability Analysis of Uncertain Incentive Demand Response Distribution Network
下载PDF
导出
摘要 随着激励型需求响应逐渐参与到电网运行中,其在改善负荷分布以及提升配电网可靠性具有影响。在现有激励型需求响应特点的基础上,依据消费者心理学原理分别建立了不可调度(可中断负荷、紧急需求响应)和可调度(直接负荷控制)的响应模型。以不同时间尺度为基础通过模糊C均值聚类算法将激励型需求响应资源进行分类,在此基础上考虑不可调度和可调度响应资源在不同时间尺度下的响应能力和不确定性等响应特性,建立了灵活配置的激励型需求响应参与两阶段响应调度模型,最后通过序贯蒙特卡洛模拟法对改进RBTS Bus6系统进行可靠性计算。算例验证了所提方法的有效性。 Alone with the participating of incentive demand response into power grid operation gradually,it plays significant role in improving load distribution and takes an important part in raising the reliability of distribution network.Based on the features of existing incentive demand response and according to the principles of consumer psychology,the nonschedulable response model for interruptible load and emergency demand response,and the schedulable model for direct load control,were respectively established.On the basis of different time scales and by means of fuzzy C-means clustering algorithm the incentive demand response resources were classified,and on this basis the response features such as the response capabilities and uncertainties of non-schedulable and schedulable resources under different time scales were considered,and then a flexibly configurable two stage response scheduling model with the participation of incentive demand response was established.At last,the reliability calculation for an improved RBTS system was performed by use of sequential Monte Carlo simulation.The effectiveness of the proposed method is verified by simulation results.
作者 范宏 邓剑 FAN Hong;DENG Jian(Shanghai University of Electric Power,Yangpu District,Shanghai 200090,China)
机构地区 上海电力大学
出处 《现代电力》 北大核心 2020年第4期416-424,共9页 Modern Electric Power
基金 国家重点研发计划(2018YFB0905105)。
关键词 Logistic函数 模糊C均值聚类 激励型需求响应 不确定性 配电网可靠性 logistic function fuzzy C-means clustering Incentive demand response uncertainty distribution network reliability
  • 相关文献

参考文献16

二级参考文献210

共引文献547

同被引文献91

引证文献7

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部