期刊文献+

基于云平台的疲劳驾驶检测系统 被引量:4

Fatigue Driving Detection System Based on Cloud Platform
下载PDF
导出
摘要 本文针对国内因疲劳驾驶而事故多发的情况,提出了基于深度机器学习和智能云平台的疲劳检测和驾驶事故自动检测解决方法。该方法很好地适应了车辆和驾驶室的复杂工作环境,旨在让操作人员能够快速实现基于深度和机器视觉的疲劳驾驶检测和报警功能,通过在驾驶员的上方安装可移动摄像头实时采集驾驶员的图像,将实时获取的视频流数据送入处理设备进行处理,同时利用预先训练好的疲劳检测模型从摄像头提取出人脸的特征点,依据PERCLOS疲劳驾驶判断准则来判断车辆驾驶者是否已经处于疲劳状态并实时上传图像数据至云端处理平台,同时根据人脸的位移和方向,利用舵机使摄像头始终正对驾驶者的脸部,最终完成一个集便携性、高效性、准确性为一体的疲劳检测系统。 In order to effectively deal with the complex situation of fatigue detection and frequent accidents of driving,a solution of automatic fatigue detection of driving based on deep machine learning and intelligent cloud platform is proposed. The solution is well adapted to the complex driving environment. The purpose is to help the operator to quickly realize the fatigue driving detection and alarm function based on depth and machine vision,and collect the driver’s image by a movable camera,The real-time video stream data is sent to the processing equipment for corresponding processing. At the same time,face feature points are extracted by using the pre-trained fatigue detection model to monitor the dynamic changes of the eyes and mouth of the driver. According to PERCLOS fatigue driving judgment criterion,we can judge whether the driver is in fatigue driving state and upload image data to the fatigue driving cloud processing platform. Finally,a fatigue detection system with portability,high efficiency and accuracy is completed.
作者 张廷 熊章锦 周小凯 谢谦 ZHANG Ting;XIONG Zhangjin;ZHOU Xiaokai;XIE Qian(School of Information Engineering,Minzu University of China,Beijing 100081,China)
出处 《中央民族大学学报(自然科学版)》 2020年第3期61-66,70,共7页 Journal of Minzu University of China(Natural Sciences Edition)
基金 北京市大学生创新项目(2019Beij110021)。
关键词 疲劳驾驶 疲劳检测 物联网 人脸识别 fatigue driving fatigue detection internet of things face recognition
  • 相关文献

参考文献9

二级参考文献68

  • 1张铁忠.疲劳心理学的几个问题[J].心理科学通讯,1985,8(3):61-63. 被引量:5
  • 2毛喆,初秀民,严新平,吴超仲.汽车驾驶员驾驶疲劳监测技术研究进展[J].中国安全科学学报,2005,15(3):108-112. 被引量:76
  • 3丁克良,欧吉坤,赵春梅.正交最小二乘曲线拟合法[J].测绘科学,2007,32(3):18-19. 被引量:68
  • 4Samuel G, Peter H. Fatigue, work-rest cycles, and psychomotor performance of New Zealand truck drivers. New Zealand Journal of Psychology, 2001, 30(1): 32-39. 被引量:1
  • 5Takahashi I, Yokoyama K. Development of a feedback stimulation for drowsy driver using heartbeat rhythms. Engineering in Medicine and Biology Society. Boston, 2011:4153-4158. 被引量:1
  • 6Rogado E, Garcia J, Barea R, et al. Driver fatigue detection system // Robotics and Biomimetics. Bangkok, 2009:1105 1110. 被引量:1
  • 7Celenk M, Eren H, Poyraz M. Prediction of driver head movement via Bayesian learning and ARMA modeling // Intelligent Vehicles Symposium. Xi'an, 2009:542-547. 被引量:1
  • 8Sandberg D, Wahde M. Particle swarm optimization of feedforward neural networks for the detection of drowsy driving//Neural Networks. Hong Kong, 2008: 788-793. 被引量:1
  • 9Kim Y, Youmin K, Hahn M. Detecting driver fatigue based on the driver's response pattern and the front view environment of an automobile // Second International Symposium. Osaka, 2008:237 240. 被引量:1
  • 10Garcia I, Bronte S, Bergasa L M, et al. Vision-based drowsiness detector for a realistic driving simulator// Intelligent Transportation Systems, 13th International IEEE Conference. Funchal, 2010:887-894. 被引量:1

共引文献512

同被引文献31

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部