期刊文献+

基于幅值特征提取的混频电磁钢轨探伤方法 被引量:4

Multi-frequency electromagnetic railway inspection based on amplitude feature extraction algorithm
下载PDF
导出
摘要 混频电磁钢轨探伤可通过获取检测信号中各频率分量的幅值信息以确定钢轨的损伤情况。给出了一种基于谱分析方法的混频电磁钢轨探伤幅值特征提取方法,从理论上论证了该方法应用于混频钢轨探伤检测的可行性并给出了实现方法;通过MATLAB软件对已知混频信号进行幅值提取仿真,验证了该幅值提取方法在不同条件下的准确性;搭建了实验系统,该系统采用三线圈差分式线圈阵列作为传感器,使用含有损伤的圆柱体钢块作为实验样品,通过实验样品的旋转模拟传感器在钢轨上方的运动。混频检测信号的幅值特征提取实验结果表明:该幅值特征提取方法可有效应用于混频电磁钢轨探伤。 Multi-frequency electromagnetic railway inspection needs obtain the amplitude of each frequency component of detection signal to diagnosis the condition of defect of rail track. This paper propose an amplitude feature extraction algorithm based on spectrum analysis for multi-frequency electromagnetic railway inspection. Prove the effectiveness of apply this method to multi-frequency electromagnetic railway inspection through theoretical analysis and the implementation method of this extraction algorithm is given. The accuracy of this algorithm is verified when different condition selected by using MATLAB simulation. An experimental system which using three coils differential structured sensor is developed for railway inspection experiment. This system using cylinder steel as experiment sample and using the rotation of sample to simulate the movement of senor up on the rail track. The experiment results of amplitude feature extraction of multi-frequency detection signal shows that it is effectiveness and feasibility for using this amplitude extraction algorithm in multi-frequency railway inspection.
作者 霍继伟 刘泽 王成飞 王亚东 Huo Jiwei;Liu Ze;Wang Chengfei;Wang Yadong(School of Electronic and Inform ation Engineering,Beijing Jiaotong University,Beijing 100044,China)
出处 《电子测量技术》 2020年第13期105-110,共6页 Electronic Measurement Technology
基金 国家自然科学基金(61771041) 北京市自然科学基金(4192045) 中央高校基本科研业务费(2019YJS016)项目资助。
关键词 钢轨探伤 幅值特征提取 电磁无损检测 数字解调 rail inspection amplitude feature extraction electromagnetic NDT digital demodulation
  • 相关文献

参考文献12

二级参考文献240

共引文献464

同被引文献36

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部