摘要
本文使用丰富的海砂资源制备海水海砂高性能混凝土并研究其耐高温性能。通过压汞仪研究不同养护方式和预处理后海水海砂高性能混凝土的孔结构、微观结构,及其爆裂温度、爆裂过程和不同温度加热后力学性能变化规律。研究发现:采用热水养护的海水海砂高性能混凝土抗压强度达到162.03MPa;高温后混凝土的力学性能呈先增加后衰减的变化趋势,海水海砂高性能混凝土在300℃~400℃时力学性能达到峰值;海水海砂混凝土最高加热温度达到1150℃不爆裂。使用海水海砂制备的高性能混凝土具备较好的耐高温性能,采用标准养护并在应用前进行烘干处理可以使混凝土的耐高温性能达到最佳。
In this paper,high performance concrete of sea sand sea water was prepared with abundant sea sand resources and its high temperature resistance was studied.The pore structure of high-performance seawater sand concrete after different curing methods and pretreatment was studied by mercury injection instrument,and its microstructure was studied as well.The bursting temperature,bursting process and the change law of mechanical properties were tested after heating at different temperatures.It was found that the compressive strength of sea sand sea water high performence concrete using hot water curing reached 162.03MPa.After the high temperature,the mechanical properties of concrete showed a trend of first increasing and then decreasing,The mechanical properties of high-performance concrete from seawater sand reached the peak value at 300℃~400℃.The maximum heating temperature of seawater sand concrete reaches 1150℃without cracking.The high performance concrete prepared with sea sand and sea water has good high temperature resistance,which can be optimized by standard curing and drying treatment before application.
作者
张凯
李田雨
刘小艳
杨仕超
王德志
李伟华
ZHANG Kai;LI Tianyu;LIU Xiaoyan;YANG Shichao;WANG Dezhi;LI Weihua(Guangdong Provincial Academy of Building Research Group Co.,Ltd.,Guangzhou 510000,China;College of Mechanics and Materials,Hohai University,Nanjing 210098,China;School of Chemical Engineering and Technology,Sun Yat-sen University,Zhuhai 519000,China;School of Civil Engineering and Water Conservation,Ningxia University,Yinchuan 750021,China)
出处
《粉煤灰综合利用》
CAS
2020年第4期64-70,共7页
Fly Ash Comprehensive Utilization
基金
江苏省科技支撑计划(BE2015706)
广东省科技支撑计划(2018B020207015—专题二)
河海大学中央高校基本科研业务费项目(2017B05614)。
关键词
模拟海水
海砂混凝土
MIP
耐高温性能
折减系数
simulated sea water
sea-sand concrete MIP
high temperature resistance
reduction factor