摘要
针对光电式织物纬斜检测方法存在准确度低、适应性差、耗时长的问题;提出了结合Sobel边缘方向和累加概率霍夫变换(PPHT)的机器视觉织物纬纱倾斜检测方法,能够快速准确地检测出织物纬斜方向角度;首先对工业相机采集到的织物图像进行频域滤波再逆变换,增强织物图像中的纬纱纹路;然后使用Sobel方向算子对织物图像卷积运算得到织物图像的边缘方向图,并对其阈值化分割出边缘方向图中的纬纱纹路区域;最后将纬纱纹路区域骨架化,采用累积概率霍夫变换检测出近似纬纱纹路区域骨架直线的倾斜角度,即织物纬纱倾斜角度;通过对不同类型的织物样品进行纬斜检测测试,测试结果为检测纬斜角度的偏差值低于0.1°,检测时间低于0.6s;结果证明提出的方法能够满足机器视觉整纬器精确性、实时性和通用性的要求。
The method for recognizing the photoelectric fabric weft has the problems of low accuracy,poor adaptability and long time.A method of fabric weft skew detection for machine vision based on Sobel edge direction and progressive probabilistic Hough transform(PPHT)is proposed,which can quickly and accurately recognize the angle of fabric weft skew.Firstly,the fabric image collected by the industrial camera is subjected to frequency domain filtering and inverse transformation to enhance the weft lines in the fabric image;then the Sobel direction operator is used to convolve the fabric image to obtain the edge direction pattern of the fabric image,and thresholding segments the weft lines region in the edge direction pattern;finally,the weft lines region is skeletonized,and the cumulative probability Hough transform is used to detect the lines skew angle of the skeleton of the approximate weft lines region,that is,the fabric weft skew.The weft skew detection test was carried out on fabric samples of different types.The test result was that the deviation value of the fabric weft skew was less than 0.1°,and the detection time was less than 0.6 s.The results prove that the proposed method can meet the requirements of accuracy,real-time and versatility of the machines vision weft-straightener.
作者
史先传
董冲
苏胜辉
徐镇冬
Shi Xianchuan;Dong Chong;Su Shenghui;Xu Zhendong(School of Mechanical Engineering,Changzhou University,Changzhou 213164,China)
出处
《计算机测量与控制》
2020年第8期48-52,57,共6页
Computer Measurement &Control
关键词
织物纬斜
频域滤波
Sobel边缘方向
骨架化
累积概率霍夫变换
fabric weft skew
frequency domain filtering
Sobel edge direction
skeletonization
PPHT(progressive probabilistic Hough transform)