期刊文献+

基于蒙特卡罗算法的电动汽车充电负荷预测及系统开发 被引量:63

Electric Vehicle Charging Load Prediction and System Development Based on Monte Carlo Algorithm
下载PDF
导出
摘要 文中在分析电动汽车充电负荷特征的基础之上,利用日行驶里程、起始充电时刻、充电功率、充电时长、初始荷电状态和电动汽车保有量这6个影响因素建立了电动汽车充电负荷的预测模型,并详细介绍了利用蒙特卡罗模拟算法求解该模型的步骤。在实例中将电动汽车分为私家车、公务车和出租车,根据其特点的不同分别进行负荷预测,最终得到该区域总的电动汽车充电负荷。最后基于蒙特卡罗模拟算法开发了电动汽车充电负荷预测系统,方便使用者准确计算。 Based on the analysis of the characteristics of electric vehicle charging load,this paper establishes a fore⁃casting model of electric vehicle charging load by using the six factors of daily driving mileage,starting charging time,charging power,charging time,initial state of charge and electric vehicle ownership,and introduces the steps of solv⁃ing the model by Monte Carlo simulation algorithm in detail.In the example,electric vehicles are divided into private cars,business cars and taxis.According to their different characteristics,load forecasting is carried out respectively,and finally the total electric vehicle charging load in a certain area is obtained.Finally,based on Monte Carlo simula⁃tion algorithm,a forecasting system of electric vehicle charging load is developed to facilitate accurate calculation.
作者 常小强 宋政湘 王建华 CHANG Xiaoqiang;SONG Zhengxiang;WANG Jianhua(State Key Laboratory of Electrical Insulation and Power Equipment,Xi’an Jiaotong University,Xi’an 710049,China)
出处 《高压电器》 CAS CSCD 北大核心 2020年第8期1-5,共5页 High Voltage Apparatus
基金 西安市科技计划项目(201809160CX1JC2⁃01) 国家重点研发计划项目(2018YFB0905605)。
关键词 电动汽车负荷预测 蒙特卡罗算法 系统开发 electric vehicle load forecasting Monte Carlo algorithm system development
  • 相关文献

参考文献6

二级参考文献45

  • 1YANG Hong-xing, ZHOU Wei, LU Lin, et al. Optimal sizing method for stand-alone hybrid solar-wind system with LPSP technology by using genetic algorithm[J]. Energy, 2008, 82(4): 354-367. 被引量:1
  • 2Doucette R T, McCulloch M D. Modeling the prospects of plug-in hybrid electric vehicles to reduce CO2 emissions[J]. Applied Energy, 2011, 88(7): 2315-2323. 被引量:1
  • 3Li Xin, Lopes L A C, Williamson S S. On the suitability of plug-in hybrid electric vehicle (PHEV) charging infrastructures based on wind and solar energy[C] // Power & Energy Society General Meeting, 2009: 1-8. 被引量:1
  • 4LIU Chun-hua, Chau K T, DIAO Chen-xi, et al. A new DC micro-grid system using renewable energy and electric vehicles for smart energy delivery[C] //Vehicle Power and Propulsion Conference (VPPC), 2010 IEEE, Lille, 2010: 1-6. 被引量:1
  • 5Phil Chiu, Stig Hogberg, Jeremy Hieb, et al. Microgrid integration of electric vehicle storage with hybrid renewable systems[J]. 被引量:1
  • 6Dial S, Belhamel M, Haddaci M, et al. A methodology for optimal sizing of autonomous hybrid PV/wind system[J]. Energy Policy, 2007, 35: 5708-5718. 被引量:1
  • 7QIAN Ke-jun, ZHOU Cheng-ke, Allan Malcolm, et al. Modeling of load demand due to EV battery charging in distribution systems[J]. IEEE Trans on Power Systems, 2011, 26(2): 802-810. 被引量:1
  • 8Price K V, Store R M, Lampinen J A. Differential evolution--a practical approach to global optimization[M]. Berlin, Germany: Springer-Verlag, 2005. 被引量:1
  • 9Zhou C K, Qian K J, Allan M, et al. Modeling of the cost of EV battery wear due to V2G application in power systems[J]. IEEE Trans on Energy Conversion, 2011, 26(4): 1041-1050. 被引量:1
  • 10杨孝纶.电动汽车技术发展趋势及前景(上)[J].汽车科技,2007(6):10-13. 被引量:59

共引文献119

同被引文献852

引证文献63

二级引证文献510

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部