摘要
液态金属作为新型材料广泛应用于生物医疗、机械制造等领域。液态金属的高动力黏度和高表面张力等特性使得液态金属液滴可寻址操控的研究目前仍极具挑战。本文提出采用梯度电压驱动液态金属液滴在黏性溶液中运动的方法,与传统功能梯度表面方法相比,该方法不需要依赖特殊的固体表面,更精准灵活地调控液滴运动。采用水平集技术模拟对比梯度电势、梯度表面和两者共同驱动三种方式的液滴自动寻址过程动力学特性。结果验证了梯度电势驱动液态金属液滴定向运动的可行性。本文详细讨论了液态金属液滴、周围流体的黏度及表面张力等参数也会对液态金属驱动过程产生影响,并设计了操控液滴定向寻址运动、分裂等的蜂窝状组合电极表面,相关研究可为液态金属可寻址定向运动提供理论指导。
Liquid metals have been widely used in biomedical and mechanical industries.It is a great challenge to manipulate the addressable motion of liquid metal droplets owning to their high dynamic viscosity and high surface tension.This paper proposes a method that uses gradient voltage to drive liquid metal droplets to move in the viscous solution.Compared with the traditional functional gradient surface method,this method does not need to rely on a special solid surface,and regulates the droplet movement more accurately and flexibly.The level set technology is used to simulate the dynamic characteristics of the droplet automatic addressing process in which the gradient potential,the gradient surface,and the two are driven together.The results verify the feasibility of directional motion of liquid metal droplets driven by gradient potential.This paper discusses in detail the parameters of liquid metal droplets,the surrounding fluid viscosity and surface tension,etc.,which will also affect the driving process of liquid metal.Related research can provide theoretical guidance for liquid metal addressable directional motion.
作者
白冰鹤
陆规
闵琪
李元媛
BAI Bing-He;LU Gui;MIN Qi;LI Yuan-Yuan(School of Energy,Power and Mechanical Engineering,North China Electric Power University,Beijing 102206,China;Key Laboratory of Condition Monitoring and Control for Power Plant Equipment,Ministry of Education,North China Electric Power University,Beijing 102206,China;Institute of Nuclear and New Energy Technology,Tsinghua University,Beijing 100084,China)
出处
《工程热物理学报》
EI
CAS
CSCD
北大核心
2020年第8期1845-1850,共6页
Journal of Engineering Thermophysics
基金
国家自然科学基金项目(No.51606064,No.51876057)。
关键词
液态金属
电驱动
表面湿润性
动力黏度
表面张力
liquid metal
electric drive
surface wettability
dynamic viscosity
surface tension