期刊文献+

单模直调垂直腔面发射激光器研究进展 被引量:14

Progress in Single-Mode and Directly Modulated Vertical-Cavity Surface-Emitting Lasers
原文传递
导出
摘要 垂直腔面发射激光器(VCSEL)具有尺寸小、功耗低、效率高、调制带宽大、寿命长、圆形光束、在片测试、易于二维阵列排列等优点,广泛应用于数据通信、传感、激光雷达、材料加工等领域。这些应用通常要求VCSEL具有优异的模式、速率、能效、高温性能等。人们基于“分离”限制思路发展了多种单模新型氧化限制VCSEL。采用新型VCSEL结构、改善有源区性能、减小寄生效应和减小热效应等方法,VCSEL在速率、功耗、高温性能等方面取得了显著进展。光子超结构具有优异的性能,它为VCSEL控制模式和光场,以及其和平面光子回路的集成提供了新思路。 Vertical-cavity surface-emitting lasers(VCSELs)provide several advantages,such as small footprint,low power consumption,high efficiency,broad modulation bandwidth,long lifetime,circular beam,wafer-level test,and two-dimensional array arrangement.VCSELs have been widely deployed in fields such as data communication,sensing,light detection and ranging(LiDAR),and material processing.These applications require VCSELs that have superior modal properties,high data rate,high energy efficiency,and high temperature stability.Many novel oxide-confined VCSELs based on separated confinement for single-mode operation have been reported.Progress in data rate,power consumption,and temperature stability of VCSELs has been achieved using novel VCSEL structures,improving the active region,reducing the parasitic effect,and reducing the thermal effect.Photonic metastructures with unique optical properties can be used to control the modes and modal fields of VCSELs and integrate VCSELs with in-plane photonic circuits.
作者 刘安金 Liu Anjin(State Key Laboratory on Integrated Optoelectronics,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China;Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《中国激光》 EI CAS CSCD 北大核心 2020年第7期55-70,共16页 Chinese Journal of Lasers
基金 国家自然科学基金(61675193)。
关键词 激光器 垂直腔面发射激光器 单模 调制速率 光子超结构 lasers vertical-cavity surface-emitting lasers single mode modulation rate photonic metastructure
  • 相关文献

参考文献6

二级参考文献93

  • 1Cisco. Cisco Global Cloud Index: Forecast and Methodology, 2014-2019 White Paper, http://www.cisco.com/c/en/us/solutions/ collateral/service-provider/global-cloud-index-gci/Cloud_Index_ White_Paper.html. 被引量:1
  • 2TOP500 supercomputer list of November 2015, http://www.top500. org/statistics/perfdevel/. 被引量:1
  • 3Savage N. Linking with light. IEEE Spectrum, 2002, 39(8): 32-36. 被引量:1
  • 4Bermer A F, Ignatowski M, Kash J A, Kuchta D M, Ritter M B,Exploitation of optical interconnects in future server architectures. IBM Journal of Research and Development, 2005, 49(4/5): 755 775. 被引量:1
  • 5Coteus P W, Knickerbocker J U, Lam C H, Vlasov Y A. Technologies for exascale systems. IBM Journal of Research and Development, 2011, 55(5): 14-1-14-12. 被引量:1
  • 6Lam C F, Liu H, Koley B, Zhao X, Kamalov V, Gill V. Fiber optic communication technologies: what's needed for datacenter network operations. IEEE Communications Magazine, 2010, 48(7): 32-39. 被引量:1
  • 7Borkar S. Role of interconnects in the future of computing. Journal of Lihtwave Technology, 2013, 31(24): 3927-3933. 被引量:1
  • 8Taubenblatt M A. Optical interconnects for high-performance computing. Journal of Lightwave Technology, 2012, 30(4): 448- 457. 被引量:1
  • 9Miller D A B. Device requirements for optical interconnects to silicon chips. Proceedings of the IEEE, 2009, 97(7): 1161185. 被引量:1
  • 10Miller D A B. Rationale and challenges for optical interconnects to electronic chips. Proceedings of the IEEE, 2000, 88(6): 72849. 被引量:1

共引文献55

同被引文献48

引证文献14

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部