期刊文献+

基于全卷积递归网络的弱小目标检测方法 被引量:18

Dim and Small Target Detection Based on Fully Convolutional Recursive Network
原文传递
导出
摘要 提出一种基于深度学习的弱小目标检测方法,该方法基于语义分割任务,利用全卷积递归网络学习复杂背景下弱小目标的特征,并在网络中使用了残差学习和递归操作,具有加速网络优化、模型参数少、深度递归监督和特征重用等特点。将此方法应用在两个真实的图像序列和红外图像测试集上,与三种最新的弱小目标检测方法进行对比,结果显示,在目标增强和背景抑制方面,此方法取得了最好的可视化效果,并在目标检测率、信噪比增益、信杂比增益和背景抑制因子等评价指标上取得了优秀的测试结果。因此,对于不同场景下的红外图像弱小目标检测问题,此方法具有良好的适用性和鲁棒性。 This paper proposes a method for weak target detection based on deep learning.The proposed method based on semantic segmentation uses a fully convolutional recursive network to learn the characteristics of targets in complex backgrounds.Furthermore,it uses residual learning and recursive operation in the network,which exhibits the characteristics of an accelerating network optimization,fewer model parameters,deep recursive supervision,and feature reuse.In two real sequences and other infrared images,the proposed method has achieved the best visual effect in terms of target enhancement and background suppression compared with the three latest detection methods,and it has achieved excellent performance in the probability of detection,signal-to-noise ratio gain,signal-to-clutter ratio gain,and background suppression factor.Therefore,the proposed detection method has good applicability and robustness for infrared dim small target detection in different scenes.
作者 杨其利 周炳红 郑伟 李明涛 Yang Qili;Zhou Binghong;Zheng Wei;Li Mingtao(Laboratory of System Simulation and Concurrent Design Technology,National Space Science Center,Chinese Academy of Sciences,Beijing 100190,China;College of Engineering and Science,University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《光学学报》 EI CAS CSCD 北大核心 2020年第13期43-55,共13页 Acta Optica Sinica
基金 北京市重大科技专项(Z181100002918004)。
关键词 图像处理 弱小目标检测 红外图像 背景抑制 深度学习 递归监督 image processing dim and small target detection infrared image background suppression deep learning recursive supervision
  • 相关文献

参考文献2

二级参考文献16

共引文献28

同被引文献146

引证文献18

二级引证文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部