摘要
为研究冰晶粒子对量子干涉雷达性能参数的影响,基于冰晶粒子的Van de Hulst近似理论、标准伽马分布和Henyey-Greenstein相函数,研究了冰晶粒子背景下雷达探测光子的偏振变化,建立了冰晶粒子的不同参量对量子干涉雷达探测光子的传输距离、分辨率和误码率的影响模型。仿真结果表明,增加冰晶粒子的有效尺度,会增大探测光子的能量耗散,导致探测光子的传输距离下降;发射波束光子数目一定时,量子干涉雷达的分辨率随冰晶粒子光学厚度的增加而降低;当冰晶粒子浓度一定时,链路的量子误码率随冰晶粒子的有效尺度与非对称因子的增加而增加,且不同类型的冰晶粒子对量子误码率的影响程度不同;当保持高偏振对比度时,将椭圆率角减少到一定范围内可以降低量子误码率。
In this study,the transfer matrix method is used to enhance and regulate Goos-H?nchen(GH)shift based on graphene/hexagonal boron nitride(hBN)heterostructure in the infrared band.Theoretical research demonstrates that when the transverse magnetic polarized light with 12.20μm wavelength is incident,hBN heterostructure GH shift can be effectively improved by adjusting the Fermi level of graphene or the number of graphene layer.This phenomenon is attributed to the Lorentz resonance phenomenon in the infrared band of hBN.For 0.2 eV Fermi energy,GH shift of 80.97λcan be achieved using a single layer of graphene as the heterostructure.Moreover,the law of GH shift varying with the hBN thickness exhibits the same as that with the hBN dielectric constant.Notably,when the hBN thickness changes around 1.53μm,the positive and negative variations in GH shift can be flexibly switched in the range of-150λ-150λ.Furthermore,these findings are helpful in designing new high-sensitivity infrared optical sensors.
作者
聂敏
张怡心
杨光
张美玲
孙爱晶
裴昌幸
Nie Min;Zhang Yixin;Yang Guang;Zhang Meiling;Sun Aijing;Pei Changxing(School of Communication and Information Engineering,Xi'an University of Posts&Telecommunications,Xi'an,Shannxi 710121,China;School of Electronics and Information,Northwestern Polytechnical,University Xi'an,Shannxi 710072,China;State Key Laboratory of Integrated Service Networks,Xi'an University of Electronic Science and Technology,Xi'an,Shannxi 710071,China)
出处
《激光与光电子学进展》
CSCD
北大核心
2020年第13期82-90,共9页
Laser & Optoelectronics Progress
基金
国家自然科学基金(61971348
61201194)
陕西省国际科技合作与交流计划(2015KW-013)
陕西省教育厅科研计划(16JK1711)。
关键词
量子干涉雷达
冰晶粒子
分辨率
误码率
传输距离
quantum interference radar
ice crystal particles
resolution
bit error rate
transmission distance