期刊文献+

基于时域-误差模型的运动时变可靠性研究 被引量:6

RESEARCH ON TIME-DEPENDENT KINEMATIC RELIABILITY BASED ON TIME DOMAIN ERROR MODEL
下载PDF
导出
摘要 随着机械系统越来越复杂,研究运动时变可靠性变得非常重要。为了提高机构运动可靠性分析的效率和精度,通过概率法分析机构运动误差,基于最大熵原理和随机过程理论建立时域-误差可靠性模型。以6轴机器人机构作为研究对象,综合动态和静态运动误差。应用Adams对机构进行运动学仿真。应用蒙特卡洛法进行计算。取前5个运动周期的100个误差样本,通过建立ARIMA模型估计运动误差。应用最大熵原理推导概率分布,然后使用时域-误差模型法求解运动时变可靠度。通过与仿真方法进行对比,验证了时域-误差可靠性模型在运动可靠性研究中的正确性和有效性,为今后的研究提供参考。 With mechanical system becoming more and more complex.It is very important to research time-dependent kinematic reliability.In order to improve the efficiency and accuracy of mechanism kinematic reliability analysis.By means of the analysis of mechanism kinematic error by probability method.Based on the theory of maximum entropy and random process,the reliability model of time-domain error is established.The object of study is a 6-axis robot mechanism.The static and dynamic kinematic error was synthesized.Kinematics simulation analysis was conducted by using ADAMS.The solution could be computed with Monte Carlo method.Select 100 error samples for the first 5 periods.The kinematic error was estimated by ARIMA model.The principle of maximum entropy was applied to derive probability density function.The time-dependent kinematic reliability was then estimated by the model of time domain error.Compared with the simulation method,The correctness and validity of the time-domain error reliability model in the study of kinematic reliability are verified,which can provide the reference for future research.
作者 王帅 高鹏 刘畅 陈奕廷 WANG Shuai;GAO Peng;LIU Chang;CHEN YiTing(School of Mechanical Engineering,Liaoning Shihua University,Fushun 113001,China)
出处 《机械强度》 CAS CSCD 北大核心 2020年第4期869-874,共6页 Journal of Mechanical Strength
基金 国家自然科学基金项目(51505207) 辽宁省高等学校创新人才支持计划(LR2017070) 辽宁省教育厅科学研究经费项目(L2019019)资助。
关键词 机构 时域-误差模型 ADAMS 蒙特卡洛法 时变可靠性 Mechanism Model of time domain error ADAMS Monte Carlo method Time-dependent reliability
  • 相关文献

参考文献6

二级参考文献49

共引文献29

同被引文献59

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部