期刊文献+

删失指标随机缺失下一类非参数函数的加权局部多项式估计及其应用

Weighted Local Polynomial Estimations of a Non-parametric Function with Censoring Indicators Missing at Random and Their Applications
原文传递
导出
摘要 本文在右删失数据中删失指标部分随机缺失下,构造了一类非参数函数的校准加权局部多项式估计以及插值加权局部多项式估计,并建立了这些估计的渐近正态性;作为该方法的应用,导出了条件分布函数、条件密度函数以及条件分位数的加权局部线性双核估计和插值加权局部线性双核估计,并且得到了这些估计的渐近正态性;最后,在有限样本下对这些估计进行了模拟. In this paper,we consider the weighted local polynomial calibration estimation and imputation estimation of a non-parametric function when the data are right censored and the censoring indicators are missing at random,and establish the asymptotic normality of these estimators.As their applications,we derive the weighted local linear estimator and imputation estimation of the conditional distribution function,the conditional density function and the conditional quantile function,and investigate the asymptotic normality of these estimators.Finally,the simulation studies are conducted to illustrate the finite sample performance of the estimators.
作者 王江峰 周杨程 唐菊 WANG Jiangfeng;ZHOU Yangcheng;TANG Ju(School of Statistics and Mathematics,Zhejiang Gongshang University,Hangzhou,Zhejiang,310018,P.R.China)
出处 《数学进展》 CSCD 北大核心 2020年第4期463-480,共18页 Advances in Mathematics(China)
基金 国家社会科学基金(No.16BTJ029) 浙江省自然科学基金(No.LY18A010007)。
关键词 局部多项式估计 渐近正态性 非参数函数 删失指标 随机缺失 local polynomial estimation asymptotic normality non-parametric function censoring indicator missing at random
  • 相关文献

参考文献2

二级参考文献10

  • 1Dikta, D., On semiparametric random censorship models, Journal of Statistical Planning and Infer- ence, 66(2)(1998): 253-279. 被引量:1
  • 2Fan, J. and Gijbels, I., Censored regression: local linear approximations and their applications, Journal of the American Statistical Association, 89(426)(1994): 560-570. 被引量:1
  • 3Guessoum, Z. and Ould-Sad, E., On nonparametric estimation of the regression function under random censorship model, Statistics z Risk Modeling, 26(3)(2008): 159-177. 被引量:1
  • 4Lu, W. and Liang, Y., Analysis of competing risks data with missing cause of failure under additive hazards model, Statistica Sinica, 18(1)(2008): 219-234. 被引量:1
  • 5Mfiller, H.G. and Wang, J.L., Hazard rate estimation under random censoring with varying kernels and bandwidths, Biometrics, 50(1)(1994): 61-76. 被引量:1
  • 6Stone, C.J., Optimal global rates of convergence for nonparametric regression, The Annals of Statis- tics, 10(4)(1982): 1040 1053. 被引量:1
  • 7Stute, W., A law of the logarithm for kernel density estimators, The Annals of Probability, 10(2) (1982): 414-422. 被引量:1
  • 8van der Laan, M.J. and McKeague, I.W., Efficient estimation from right-censored data when failure indicators are missing at random, The Annals of Statistics, 26(1)(1998): 164-182. 被引量:1
  • 9Wang, Q.H. and Dinse, G.E., Linear regression analysis of survival data with missing censoring indicators, Lifetime Data Analysis, 17(2)(2011): 256-279. 被引量:1
  • 10Wang, Q.H. and Ng, K.W., Asymptotically efficient product-limit estimators with censoring indicators missing at random, Statistica Sinica, 18(2)(2008): 749-768. 被引量:1

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部