期刊文献+

半模弱Brandt半群

Semimodular Weak Brandt Semigroups
原文传递
导出
摘要 全子半群定义为包含所有幂等元的子半群.众所周知,一个半群所有全子半群关于集合的包含关系构成格.一个ample半群称为分配的(模的;半模的),如果其全子半群格为分配格(模格;半模格).本文得到了弱Brandt半群成为半模(模;分配)ample半群的充分必要条件.作为应用,确定了本原半单ample半群何时为模(分配)ample半群. Full subsemigroups are defined as subsemigroups containing all idempotents.It is well known that all full subsemigroups of a semigroup form a lattice under the inclusion.An ample semigroup is said to be distributive(modular;semimodular)if its lattice of full subsemigroups is distributive(modular;semimodular).In this paper a sufficient and necessary condition is obtained for a weak Brandt semigroup to be semimodular(resp.modular;distributive).As an application,it is determined when a primitively semisimple ample semigroup is modular(resp.,distributive).
作者 郭俊颖 郭小江 肖芬芬 GUO Junying;GUO Xiaojiang;XIAO Fenfen(College of Science and Technology,Jiangxi Normal University,Nanchang,Jiangxi,330022,P.R.China;College of Mathematics and Information Science,Jiangxi Normal University,Nanchang,Jiangxi,330022,P.R.China)
出处 《数学进展》 CSCD 北大核心 2020年第4期429-442,共14页 Advances in Mathematics(China)
基金 NSFC(Nos.11761034,11361027,11661042) Natural Science Foundation of Jiangxi Province(No.20161BAB201018)。
关键词 (本原半单)ample半群 全子半群 (分配 半模)格 (primitively semisimple)ample semigroup full subsemigroup (distributive modular semimodular)lattice
  • 相关文献

参考文献2

二级参考文献21

  • 1Sevrin, L.N. and Ovsyannikov, A.J., Semigroups and their subsemigroup lattice, Semigroup Forum, 1983, 27: 1-154. 被引量:1
  • 2Suzuki, M., Structure of a Group and the Structure of this Lattice of Subgroups, Berlin: Springer-Verlag, 1956. 被引量:1
  • 3Johnston, K.G., Subalgebra lattices of completely simple semigroups, Semigroup Forum, 1984, 29: 109-113. 被引量:1
  • 4Jones, P.R., Semimodular inverse semigroups, J. London Math. Soc., 1978, 17: 446-456. 被引量:1
  • 5Jones, P.R., Distriutive inverse semigroups, J. London Math. Soc., 1978, 17: 457-466. 被引量:1
  • 6Johnston, K.G., and Jones, P.R., The lattice of full regular subsemigroups of a regular semigroup, Proc. Royal Sac. Edinburgh, 1984, 98A: 203-214. 被引量:1
  • 7Tamura, T., On monoids whose submonoids form a chain, J. Gakugei Tokushima Univ., 1954, 5: 8-16. 被引量:1
  • 8Jones, P.R., Inverse semigroups whose full inverse subsemigroups form a chain, Glawgow Math. J., 1981, 22: 159-165. 被引量:1
  • 9Guo X.J., Huang F.S. and Shum, K.P., Type-A semigroups whose full regular subsemigroups form a chain under set inclusion, Asian-European J. Math., 2008, 1: 359-367. 被引量:1
  • 10Clifford, A.H. and Preston, G.B., The algebraic theory of semigroups, Vol. I, Math. Survey of the American Math. Soc. 7, Provindence, R.I., 1961. 被引量:1

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部