期刊文献+

基于多层关联规则挖掘的ADR风险检测与预警研究 被引量:4

Risk Detection and Early Warning of Adverse Drug Reactions Based on Multi-level Association Rule Mining
下载PDF
导出
摘要 针对单层关联规则在精神障碍患者药品不良反应(Adverse Drug Reaction,ADR)风险检测与预警中存在的不足,提出一种基于多层关联规则和概念层次树的ADR风险检测与预警系统框架。该系统结合精神障碍患者ADR报告实际数据,通过领域知识构建概念层次树,并采用多层关联规则挖掘方法找出ADR临床症状与不同相关因素(用药人群、用药情况等)组合之间较高概念层次的强关联规则。结果表明,与单层关联规则相比,多层关联规则能够为ADR风险检测与预警提供更好的临床用药辅助决策。 Aiming at the shortcomings of single-level association rules in the risk detection and early warning of adverse drug reactions(ADR)in patients with mental disorders,the framework of ADR risk detection and warning system for patients with mental disorders based on concept hierarchy tree and multiple-level association rule mining was proposed.The system combines the actual data of ADR reports from patients with mental disorders,constructs a conceptual hierarchy tree through domain knowledge,and uses a multiple-level association rule mining method to discover strong association rules at higher conceptual levels between the medication population,the medication situation and the clinical symptoms of ADR.The results show that compared with single-level association rules,multi-level association rules can provide better clinical medication aided decision-making for ADR risk detection and early warning.
作者 叶明全 苏洋 童九翠 Ye Mingquan;Su Yang;Tong Jiucui(School of Medical Information,Wannan Medical College,Wuhu 241000;Research Center of Health Big Data Mining and Applications,Wannan Medical College,Wuhu 241000;Yijishan Hospital,Wannan Medical College,Wuhu 241000)
出处 《池州学院学报》 2020年第3期23-26,共4页 Journal of Chizhou University
基金 国家自然科学基金项目(61672386) 教育部人文社会科学研究规划基金项目(16YJAZH071) 安徽省自然科学基金项目(1708085MF142)。
关键词 药品不良反应 ADR预警 数据挖掘 多层关联规则 概念层次树 Adverse Drug Reaction ADR Early Warning Data Mining Multi-Level Association Rule Concept Hierarchy Tree
  • 相关文献

参考文献6

二级参考文献72

  • 1杨明.一种基于改进差别矩阵的属性约简增量式更新算法[J].计算机学报,2007,30(5):815-822. 被引量:112
  • 2Agrawal R, Srikant R. Fast algorithms for mining association rules. In: Proc. of the Int'l Conf. on Very Large Data Bases (VLDB). Santiago, 1994. 487-499. 被引量:1
  • 3Zaki MJ. Scalable algorithms for association mining. IEEE Trans. on Knowledge and Data Engineering (TKDE), 2000.12(3): 372-373. [doi: 10.1109/69.846291]. 被引量:1
  • 4Han J, Pei J, Yin YW. Mining frequent patterns without candidate generation. In: Proe. of the ACM Annual Conf. on Management of Data (SIGMOD). 2000. 1-12. [doi: 10.1145/342009.335372]. 被引量:1
  • 5Liu GM, Lu HJ, Lou WW, Xu YB, Yu JX. Efficient mining of frequent patterns using ascending frequency ordered prefix-tree. Data Mining and Knowledge Discovery (DMKD), 2004,9(3):249-274. [doi: 10.1023/B:DAMI.0000041128.59011.53]. 被引量:1
  • 6Han JW, Fu YQ. Discovery of multiple-level association rules from large databases. In: Proc. of the Int'l Conf. on Very Large Data Bases (VLDB). 1995.420-431. 被引量:1
  • 7Srikant R, Agrawal R. Mining generalized association rules. In: Proc. of the Int'l Conf. on Very Large Data Bases (VLDB). 1995. 407-419. 被引量:1
  • 8Hipp J, Myka A, Wirth R, Guntzer U. A new algorithm for faster mining of generalized association rules. In: Proc. of the European Syrup. on Principles of Data Mining and Knowledge Discovery (PKDD). 1998.74-82. [doi: 10.1007/BFb0094807]. 被引量:1
  • 9Sriphaew K, Theeramunkong T. Fast algorithm for mining generalized frequent patterns of generalized association rules. IEICE Trans. on Information and Systems (TOIS), 2004,E87-D(3):761-770. 被引量:1
  • 10Pramudiono I, Kitsuregawa M. FP-Tax: Tree structure based generalized association rule mining. In: Proc. of the ACM Workshop on Research Issues in Data Mining and Knowledge Discovery (DMKD). 2004. 60-63. 被引量:1

共引文献54

同被引文献32

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部