期刊文献+

基于DM642的车载浓雾天气识别系统研究 被引量:1

Research on Vehicle Dense Fog Weather Recognition System Based on DM642
下载PDF
导出
摘要 为提高汽车行驶安全性,结合DM642芯片设计一套基于图像处理的车载浓雾天气识别系统.首先通过特征组合法确定晴朗天和浓雾天图像的最佳识别特征是暗通道均值和灰度均值,然后利用支持向量机(SVM)对分类模型进行训练,最后将识别算法以及分类模型移植到DM642中进行硬件测试.试验结果表明,该算法在硬件上能有效地区分晴朗天与浓雾天图像,识别准确率达到95%. In order to improve the safety of vehicle driving,a vehicle dense fog weather recognition system based on image processing was designed with DM642 chip.Firstly,the best features of sunny and foggy images were determined by feature combination method,which were dark channel mean and gray scale mean.Then,support vector machine(SVM)was used to train the classification model.Finally,the recognition algorithm and classification model were transplanted into DM642 for hardware test.The experimental results show that the algorithm can effectively distinguish between sunny and foggy images in hardware,and the recognition accuracy is up to 95%.
作者 玉雄侯 杨蓉 杨晓虎 黄俊明 YU Xionghou;YANG Rong;YANG Xiaohu;HUANG Junming(School of Mechanical Engineering, Guangxi University, Nanning 530004, China)
出处 《上海工程技术大学学报》 CAS 2020年第2期119-126,共8页 Journal of Shanghai University of Engineering Science
基金 国家自然科学基金资助项目(61703116) 广西科技基地和人才专项资助项目(AD19110019) 广西创新驱动发展专项资助项目(AA18242045-3) 广西自然科学基金资助项目(2017GXNSFBA198228) 广西教育厅科研资助项目(2018KY0024) 南宁市科技局重点研发计划资助项目(20192065)。
关键词 浓雾天气识别 DM642芯片 暗通道均值 灰度均值 支持向量机 dense fog weather recognition DM642 chip dark channel mean gray scale mean support vector machine(SVM)
  • 相关文献

参考文献9

二级参考文献58

  • 1韦栋.高速公路雾区设置自动限速标志系统的探讨[J].林业科技情报,2002(3):75-76. 被引量:5
  • 2齐莹菲,柳本民,郭忠印.高速公路雾天安全管理系统[J].同济大学学报(自然科学版),2007,35(1):61-66. 被引量:17
  • 3商广辉,代永平,黄茜,耿卫东.场序彩色视频控制系统[J].液晶与显示,2007,22(2):186-191. 被引量:9
  • 4VapnikVN.统计学习理论的本质[M].北京:清华大学出版社,2000.. 被引量:171
  • 5HASTIE T,TIBSHRANI R,FRIEDMAN J. The elements of statistical learning:data mining,inference,and prediction[M].New York:Springer,2001. 被引量:1
  • 6WASSEMAN L. Bayesian model selection and model averaging[J].Journal of Mathematical Psychology,2000,44(1):92-107. 被引量:1
  • 7SPIEGELHALTER D J,BES N G,CARLIN B P,et al. Bayesian measures of model complexity and fit[J].Statistical Methodology,2002,64(4):583-639. 被引量:1
  • 8KADANE J B,LAZAR N A. Methods and criteria for model selection[J].Journal of the American Statistical Association,2004,99(465):279-290. 被引量:1
  • 9FRONMONT M. Model selection by bootstrap penalization for classification[J].Machine Learning,2007,66(2-3):165-207. 被引量:1
  • 10BENGIO Y,GRANDVALET Y. No unbiased estimator of variance of K-fold cross validation[J].Machine Learning,2004,5:1089-1105. 被引量:1

共引文献105

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部