期刊文献+

基于自适应注意力机制的图像语义理解算法研究

Image Semantic Understanding Algorithm Based on Adaptive Attention Mechanism
下载PDF
导出
摘要 提出了一种基于自适应注意力机制的图像语义理解算法。图像语义理解是对图像内容在文字上进行有意义的解释和描述,但是使用逻辑通顺并且语义正确的语句来描述图像极具挑战性。传统的图像语义理解模型更加关注于图像内容和语义的正确对应,而忽略了图像中的空间信息在语义中的体现。为了学习到图像中物体之间的空间信息,在算法中加入自适应注意力机制。实验证明,改进的图像语义理解算法能够更好地表达出图像中有什么物体、物体之间的相互关系等内容。 An image semantic understanding algorithm based on adaptive attention mechanism is proposed in this paper.Image semantic understanding is a meaningful interpretation and description of the image content in words,but it is very challenging to use logical and semantic correct statements to describe image.The traditional image semantic understanding model pays more attention to the correct correspondence between image content and semantics,and ignores the representation of spatial information in image semantics.In order to learn the spatial information between objects in the image,an adaptive attention mechanism is added to the algorithm.
作者 高玥 万旺根 Gao Yue
出处 《工业控制计算机》 2020年第7期78-79,83,共3页 Industrial Control Computer
基金 上海市科委港澳台科技合作项目(18510760300) 安徽省自然科学基金项目(1908085MF178) 安徽省优秀青年人才支持计划项目(gxyqZD2019069)资助。
关键词 图像语义理解 自适应算法 注意力机制 深度学习 image semantic understanding adaptive algorithm attention mechanism deep learning
  • 相关文献

参考文献3

二级参考文献29

  • 1Bartlett MS,Movellan JR,Sejnowski TJ.Face recognition by independent component analysisIEEE Transactions on Neural Networks,2002. 被引量:1
  • 2Hyvarinen A.Fast and robust fixed-point algorithms for independent component analysis,1999(03). 被引量:1
  • 3Jing Yu,Zengchang Qin,Tao Wan,Xi Zhang.Feature integration analysis of bag-of-features model for image retrieval[J]. Neurocomputing . 2013 被引量:1
  • 4O. Déniz,G. Bueno,J. Salido,F. De la Torre.Face recognition using Histograms of Oriented Gradients[J]. Pattern Recognition Letters . 2011 (12) 被引量:1
  • 5Yanwei Pang,Yuan Yuan,Xuelong Li,Jing Pan.Efficient HOG human detection[J]. Signal Processing . 2010 (4) 被引量:1
  • 6Ahonen T,Hadid A,Pietikainen M.Face recognition with local binary patterns. Proceedings of the European Conference on Computer Vision . 2004 被引量:1
  • 7Belhumeur PN,Hespanha JP,Kriegman DJ.Eigenfaces vs Fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence . 1997 被引量:1
  • 8A. Suruliandi,K. Meena,R. Reena Rose.Local binary pattern and its derivatives for face recognition. IET COMPUTER VISION . 2012 被引量:1
  • 9ZITOVA B, FLUSSER J. Image registration methods: a survey[J]. Image and Vision Computing,2003, 21 (11) : 9772-1000. 被引量:1
  • 10SOYEL H, DEMIREL H. Improved SIFT matching for pose robust facial expression recognition[C]// Automatic Face & Gesture Recognition and Workshops (FG2011), 2011, 21-25(5) :585-590. 被引量:1

共引文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部