期刊文献+

第二类分数Ornstein-Uhlenbeck过程中参数估计的偏差不等式与Cramér-型中偏差

Deviation inequalities and Cramér-type moderate deviations for parameter estimation in the fractional Ornstein-Uhlenbeck process of the second kind
原文传递
导出
摘要 本文利用多重Wiener-Ito积分的偏差不等式和中偏差结果,得到第二类分数Ornstein-Uhlenbeck(OU)过程漂移项系数最小二乘估计量的若干渐近性质,其中包括偏差不等式和Cramér-型的中偏差;同时,给出以上估计量自正则版本的渐近性质,并以此构造漂移项系数的置信区间估计和显著性检验中的拒绝域(第二类错误以指数速度趋于0). In this paper,by using the deviation inequalities and moderate deviations for multiple Wiener-Ito integrals,we study the asymptotic properties for the least squares estimator in the Ornstein-Uhlenbeck process of the second kind.Deviation inequalities and Cramer-type moderate deviations can be obtained.Moreover,we also give the asymptotic properties for the self-normalized estimator,and then construct the confidence interval and rejection region in the hypothesis testing for the drift coefficient.It is shown that the probability of type II error tends to zero exponentially.
作者 蒋辉 王伟刚 Hui Jiang;Weigang Wang
出处 《中国科学:数学》 CSCD 北大核心 2020年第7期1007-1022,共16页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:11771209和11701509) 浙江省自然科学基金(批准号:LY19A010004)资助项目。
关键词 Cramér-型中偏差 第二类分数Ornstein-Uhlenbeck过程 最小二乘估计 多重Wiener-Ito积分 Cramér-type moderate deviations fractional Ornstein-Uhlenbeck process of the second kind least squares estimator multiple Wiener-Ito integral
  • 相关文献

参考文献4

二级参考文献49

  • 1高付清.SMALL PERTURBATION CRAMER METHODS AND MODERATE DEVIATIONS FOR MARKOV PROCESSES[J].Acta Mathematica Scientia,1995,15(4):394-405. 被引量:2
  • 2Bercu B, Rouault A. Sharp large deviations for the Ornstein-Uhlenbeck. Theory of Prob and its Appl, 2002, 46:1-19. 被引量:1
  • 3Bishwal J P N. Sharp Berry-Esseen bound for the maximum likelihood estimator in the Ornstein-Uhlenbeck process. Sankhya, Series A, 2000, 62:1-10. 被引量:1
  • 4Bishwal J P N, Bose A. Speed of convergence of the maximum likelihood estimator in the Ornstein- Uhlenbeck process. Calcutta Statist Assoc Bull, 1995, 45:245-251. 被引量:1
  • 5Bose A. Berry-Esseen bound for the maximum likelihood estimator in the Ornstein-Uhlenbeck process. Sankhya, Series A, 1986, 48:181-187. 被引量:1
  • 6Decreusefond L, Ustiinel A S. Stochastic analysis of the fractional Brownian motion. Potenial Analysis, 1999, 10:177-214. 被引量:1
  • 7Dembo A, Zeitouni D. Large Deviations Techniques and Applications. Berlin: Springer-Verlag, 1998. 被引量:1
  • 8Duncan T E, Hu Y Z, Duncan B P. Stochastic calculus for fractional Brownian motion. Siam J Control Optim, 2000, 38(2): 582-612. 被引量:1
  • 9Florens-Landais D, Pham H. Large deviations in estimate of an Ornstein-Uhlenbeck model. Journal of Applied Probability, 1999, 36:60-77. 被引量:1
  • 10Kleptsyna M L, Le Breton A, Roubaud M C. Parameter estimation and optimal filtering for fractional type stochastic systems. Statistical Inference for Stochastic Processes, 2000, 3:173-182. 被引量:1

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部