摘要
本文利用多重Wiener-Ito积分的偏差不等式和中偏差结果,得到第二类分数Ornstein-Uhlenbeck(OU)过程漂移项系数最小二乘估计量的若干渐近性质,其中包括偏差不等式和Cramér-型的中偏差;同时,给出以上估计量自正则版本的渐近性质,并以此构造漂移项系数的置信区间估计和显著性检验中的拒绝域(第二类错误以指数速度趋于0).
In this paper,by using the deviation inequalities and moderate deviations for multiple Wiener-Ito integrals,we study the asymptotic properties for the least squares estimator in the Ornstein-Uhlenbeck process of the second kind.Deviation inequalities and Cramer-type moderate deviations can be obtained.Moreover,we also give the asymptotic properties for the self-normalized estimator,and then construct the confidence interval and rejection region in the hypothesis testing for the drift coefficient.It is shown that the probability of type II error tends to zero exponentially.
作者
蒋辉
王伟刚
Hui Jiang;Weigang Wang
出处
《中国科学:数学》
CSCD
北大核心
2020年第7期1007-1022,共16页
Scientia Sinica:Mathematica
基金
国家自然科学基金(批准号:11771209和11701509)
浙江省自然科学基金(批准号:LY19A010004)资助项目。